Supplementary Material

A green metal-organic framework to monitor water contaminants

Priscilla Rocío-Bautista^a, Verónica Pino^{a,*}, Juan H. Ayala^a, Catalina Ruiz-Pérez^b, Oriol Vallcorbá^c. Ana M. Afonso^a, Jorge Pasán^{b,*}

 ^aDepartament of Chemistry, Analytical Chemistry Division, University of La Laguna, Tenerife, 38206 Spain
 ^b Laboratorio de Rayos X y Materiales Moleculares (MATMOL), Physics Department, University of La Laguna, Tenerife, 38206 Spain
 ^cALBA Synchrotron, Cerdanyola del Valles, Barcelona, 28003, Spain.

Table of contents

Figure S1	page S1
Figure S2	page S2
Figure S3	page S3
Figure S4	page S4
Figure S5	page S5

Table S1	page S6
Table S2	page S9
Table S3	page S10
Table S4	page S11
Table S5	page S12

Figure S1. Representative chromatogram of the separation of seven target emerging pollutants. The concentration level of the standard is $100 \ \mu g \cdot L^{-1}$ (in ACN). The UV-Vis detector was set at 220 nm. The UHPLC-UV-Vis separation required a binary mobile phase ACN:water at 0.4 mL·min⁻¹ flow rate with the following gradient: initially 40% of ACN, increasing linearly this percentage up to 85% in 20 min. Remaining conditions as described in the experimental section.

S

Figure S2. Representative chromatogram of the separation of PAHs by UHPLC-FD, with the wavelength program included in Table S2. The concentration level of the standard is $20 \ \mu g \cdot L^{-1}$ (in ACN). The UHPLC-FD separation required a binary mobile phase ACN:water at 1 mL·min⁻¹ flow rate: initially 50% of ACN, and increasing up to 100% of ACN in 11 min, keeping these conditions for 5 min.

Figure S3. Powder X-ray diffraction patterns collected at the lab diffractometer ($\lambda = 1.5418$ Å) in the 5-80° angular range of the as synthetized products at different reaction times, following the procedure described in the Experimental Section.

Figure S4. Scanning Electron Microscopy image of the CIM-80 crystallites.

Figure S5. TG/DTA analysis of CIM-80.

Figure S6. Thermodiffractogram of CIM-80 from 30 to 200 °C performed at BL04-MSPD beamline at ALBA synchrotron with $\lambda = 0.70815$.

Figure S7. Profile matching of the powder diffraction patterns at selected temperatures.

Figure S8. Diffraction patterns of CIM-80 after different stability tests, immersion in water at various pH values and application of vortex.

Figure S9. Images of the incubated cells in contact with the different tested concentrations of the MOF and the Alamar Blue reagent. Blue color indicates the lysis of the cells (none in this case), while pink color indicates the cells have not suffered any damage when they are put in contact with the MOF.

The cytotoxicity of the CIM-80 was evaluated using the Alamar Blue® cell viability assay as it was previously described [PLoS One. 2017;12:e0183795]. Briefly, the cell lines were put in contact with the MOF at different concentrations, ranging from 0.03 to 2 mg·mL⁻¹, and incubated in 96-well plates for 24 h. Subsequently, the plates were analyzed by the microplate reader using a test wavelength of 570 nm and a reference wavelength of 630 nm. Dose response curves were plotted, and the 50% cytotoxic concentration (CC50) concentrations were calculated by linear regression analysis with 95% confidence limits. All experiments were performed two times each one, and the mean values were also calculated.

The Alamar Blue Assay Reagent[®] was provided by Biosource (Europe, Nivelles, Belgium) and the J774.1 murine macrophage cell line by ATCCTIB-67 (American Type Culture Collection LG Promochem, Spain).

A Tali® image cytometer (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and an EnSpire® Multimode Plate Reader (Perkin Elmer, Madrid, Spain) were used.

Figure S10. Influence of the amount of MOF CIM-80 in the entire extraction efficiency of the method for the group of emerging contaminants. Experiments were carried out by triplicate: 10 mL of water are mixed with 20 mg of CIM-80, then subjected to vortex stirring during 3 min. The supernatant aqueous phase is removed by centrifugation and decantation. Afterwards, 500 µL of ACN are added to the MOF remaining in the tube (and containing the trapped contaminants). Vortex is then applied for 3 min, followed again by centrifugation.

Analyte	Structure	Molecular weight (g∙mol ⁻¹)	Volume ^a (Å ³)	Water solub. ^a (mg·L ⁻¹) at 25 °C	LogK _{OW} ^a	pK _a ª	Vapor press. ^a at 25 °C (atm)
Carbamazepine		236.27	210.32	18	2.45	13.9	7.6×10 ⁻¹⁰
Atrazine		215.68	190.90	35 (26 °C)	2.61	2.27	1.7×10 ⁻⁸
Methylparaben	HO	152.10	208.90	2.5×10 ⁻³	1.96	8.50	3.15×10 ⁻⁷
Estrone	HO HO	270.37	263.17	30	3.13	10.3	2.0×10 ⁻¹¹
Progesterone		314.46	321.10	8.8	3.87	-	4.5×10 ⁻¹¹
Benzophenone		182.20	278.10	137	3.18	11.3	2.5×10 ⁻⁶

 Table S1. Several characteristics of the group of analytes studied.

Triclosan	CI OH	289.54	212.05	10 (20 °C)	4.76	7.80	4.3×10 ⁻⁸
Naphthalene		128.17	205.10	31	3.30	-	1.0.10-4
Acenaphthene		152.20	212.90	3.9	4.07	-	1.2.10-6
Fluorene		166.22	243.30	1.7	4.18	-	7.9·10 ⁻⁷
Phenanthrene		178.23	261.90	1.1	4.46	-	1.6.10-7
Anthracene		178.23	261.90	0.040	4.45	-	1.0.10-4
Fluoranthene		202.26	269.00	0.23	5.16	-	1.2.10-8
Pyrene		202.26	269.00	0.14	4.88	-	510-10
Benz(a)anthracene		228.29	318.50	9.1×10 ⁻³	5.79	-	2.78.10-7

Chrysene	228.29	318.50	2.0×10 ⁻³	5.73	-	8.2·10 ⁻¹²
Benzo(b)fluoranthene	252.32	325.60	1.5×10-3	6.60	-	6.6·10 ⁻¹⁰
Benz(a)pyrene	252.32	325.60	1.6×10 ⁻³	6.13	-	7.2·10 ⁻¹²
Dibenz(a,h)anthracene	278.35	375.10	2.5×10 ⁻³	6.50	-	1.35.10-12
Benzo(ghi)perilene	276.34	332.70	2.6×10-4	6.63	-	110-13
Benzo(k)fluoranthene	252.32	-	8.0×10 ⁻⁴	6.11	-	1.23.10-12
Indeno(1,2,3-cd)pyrene	276.34	-	1.9×10 ⁻⁴	6.70	-	1.6.10-13

^aObtained from SciFinder[®] 2018 database

РАН	$\lambda_{ex max}^{a} (nm)$	$\lambda_{em max}^{a} (nm)$	time ^b (min)	$\lambda_{ex}(nm)$	λ _{em} (nm) in A	λ _{em} (nm) in B	λ _{em} (nm) in C	λ _{em} (nm) in D
			0	254	330	312	360	443
			2.0	214	330	312	360	443
Naphthalene	219	321	2.5°	214	330	312	360	443
-			2.6	254	330	312	360	443
Acenaphthene	225	335	<i>3.6</i> °	254	330	312	360	443
Fluorene	262	311	3.8°	254	330	312	360	443
Phenanthrene	250	363	<i>4.3</i> °	254	330	312	360	443
Anthracene	250	424	<i>4.8</i> ^c	254	330	312	360	443
			5.2	280	330	312	360	443
			5.3	280	330	375	360	443
Fluoranthene	286	455	5.4°	280	330	375	360	443
Pyrene	273	371	5.8°	280	330	375	360	443
-			6.9	280	330	375	385	443
			7.0	270	330	375	385	443
Benz(a)anthracene	286	386	7. <i>4</i> °	270	330	375	385	443
Chrysene	266	385	7.7°	270	330	375	385	443
-			8.6	275	330	375	385	443
			8.7	275	406	375	385	443
			8.8	275	406	375	385	451
Benzo(b)fluoranthene	244	442	<i>9.0</i> °	275	406	375	385	451
Benzo(k)fluoranthene	290	410	<i>9.6</i> °	275	406	375	385	451
Benz(a)pyrene	284	405	10.1°	275	406	375	385	451
			10.5	275	406	375	496	451
			10.6	288	406	375	496	451
Dibenz(a,h)anthracene	295	404	11°	288	406	375	496	451
Benzo(ghi)perilene	272	470	11.4°	288	406	375	496	451
Indeno(1,2,3-cd)pyrene	276	307	11.7°	288	406	375	496	451

Table S2. Wavelength program used in the FD for the UHPLC-FD determination of PAHs, indicating the four emission channels: A, B, C and D.

^amaximum excitation and emission wavelength [Appl. Spectroscopy 51 (1998) 380] ^bonly one wavelength can be modified at each time ^caverage retention time

Analyte	Retention time	Range	R	S _{x/y} ^b	Slope ± SD ^c	LOD ^d	LOQ ^e	RSD	f (%)
	\pm SD ^a	(µg·L ⁻¹)		·		(µg·L ⁻¹)	(µg·L ⁻¹)	Level 1 ^g	Level 2 ^h
Carbamazepine	1.6 ± 0.3	25 - 1000	0.9994	9331.4	910 ± 14	1.58	5.25	5.7	0.80
Atrazine	2.6 ± 0.1	25 - 1000	0.9998	10885	1491 ± 12	3.27	10.9	3.0	2.0
Methylparaben	4.1 ± 0.1	50 - 1000	0.9993	3194.1	797 ± 2	11.0	38.0	4.2	5.6
Estrone	4.8 ± 0.6	75 - 1500	0.9997	4035.2	272 ± 3	14.6	48.7	5.4	2.9
Progesterone	7.1 ± 0.5	50 - 1500	0.9998	9210.0	767 ± 6	11.9	39.7	3.6	2.1
Benzophenone	8.4 ± 0.5	25 - 1000	0.9999	2844.0	807 ± 5	2.21	7.40	6.8	4.9
Triclosan	9.9 ± 0.6	25 - 1250	0.9999	2683.8	569 ± 2	4.46	14.9	6.2	3.4

Table S3. Several quality analytical parameters of the UHPLC-UV method for 7 pollutants subjected study.

^astandard deviation (n = 30, inter-day)

^bstandard deviation of the regression (or error of the estimate) ^cconfidence interval for the slope, associated to n = 6 calibration levels

^dlimit of detection

elimit of quantification

^frelative standard deviation, as inter-day precision (n = 6, in 3 non-consecutive days)

^gconcentration level: 50 μ g·L⁻¹

^hconcentration level: 800 µg·L⁻¹

Analyte	Retention time	Range	R	S _{x/y} ^b	Slope ± SD ^c	LOD ^d	LOQ ^e	RSD	f (%)
	\pm SD ^a	(µg·L ⁻¹)		·		(µg·L ⁻¹)	(µg·L ⁻¹)	Level 1 ^g	Level 2 ^h
Naphthalene	2.5 ± 0.7	0.5 - 6	0.996	0.11	0.61 ± 0.03	0.03	0.1	4.1	3.6
Acenaphthene	3.6 ± 0.2	0.5 - 7	0.997	0.03	0.15 ± 0.01	0.06	0.2	4.5	2.5
Fluorene	3.8 ± 0.1	0.05 - 5	0.998	0.15	1.24 ± 0.03	0.006	0.02	4.9	1.4
Phenanthrene	4.32 ± 0.01	0.1 – 5	0.999	0.02	0.64 ± 0.01	0.03	0.09	3.1	2.0
Anthracene	4.8 ± 0.1	0.2 - 5	0.998	0.07	0.47 ± 0.02	0.015	0.05	8.0	4.0
Fluoranthene	5.40 ± 0.01	0.2 - 5	0.999	0.02	0.15 ± 0.01	0.015	0.05	3.4	1.8
Pyrene	5.86 ± 0.01	0.1 – 7	0.999	0.04	0.40 ± 0.01	0.009	0.03	5.6	4.8
Benz(a)anthracene	7.39 ± 0.01	0.1 – 5	0.994	0.11	0.46 ± 0.03	0.015	0.05	1.6	1.7
Chrysene	7.7 ± 0.2	0.05 - 4	0.999	0.06	0.85 ± 0.02	0.003	0.01	5.4	5.0
Benzo(b)fluoranthene	9.0 ± 0.1	0.1 – 5	0.997	0.05	0.30 ± 0.01	0.009	0.03	4.4	6.5
Benz(a)pyrene	9.6 ± 0.1	0.05 - 5	0.997	0.08	0.54 ± 0.02	0.003	0.01	6.2	5.9
Dibenz(a,h)anthracene	10.12 ± 0.01	0.05 - 5	0.995	0.21	0.63 ± 0.05	0.003	0.01	4.8	3.3
Benzo(ghi)perilene	11.0 ± 0.1	0.05 - 5	0.994	0.40	7.25 ± 0.51	0.006	0.02	6.2	10.9
Benzo(k)fluoranthene	11.4 ± 0.1	0.10 - 5.5	0.998	0.04	0.27 ± 0.01	0.006	0.02	6.5	5.4
Indeno(1,2,3-cd)pyrene	11.7 ± 0.1	0.5 - 8	0.999	0.01	0.08 ± 0.01	0.09	0.3	2.5	5.1

Table S4. Several quality analytical parameters of the UHPLC-FD method for the PAHs studied.

^astandard deviation (n = 30, inter-day)

^bstandard deviation of the regression (or error of the estimate)

^cconfidence interval for the slope, associated to n = 7 calibration levels

^dlimit of detection

elimit of quantification

^frelative standard deviation, as inter-day precision (n = 6, in 3 non-consecutive days)

^gconcentration level: 0.8 µg·L⁻¹

^hconcentration level: 2 $\mu g \cdot L^{-1}$

Contaminant	Sorbent (amount)	Sample prep.	LOD (ng·L ⁻¹)	Chromatographic method	Reference				
Carbamazepine, estrone	NVPa	ΒΑμE ^b	5, 100 & 10	HPLC-DAD	Int. J. Environ. Anal.				
& triclosan	(2.5 mg)				Chem. 97 (2017) 484				
Atrazine	MWCNTs ^d	µSPE ^c cartidges	20	GC-MS	Sci. Total Environ. 396				
	(100 mg)				(2008) 79				
Estrone and derivatives	Oasis® HLB	µSPE ^c disks	1.37	GC-MS	Sci. Total Environ. 590				
	(-)				(2017) 832				
Progesterone	Poly(THF) ^e	FPSE ^f	60	HPLC-MS/MS	J. Chromatogr. A 1437				
	(-)				(2016) 116				
Carbamazepine,	MIL-53(Al)	D-µSPE ^h	13 - 21	HPLC-DAD	Talanta 179 (2018) 775				
atrazine, progesterone,	(5 mg)				[19]				
estrone & triclosan									
8 PAHs	Fe ₃ O ₄ /HKUST-1	M-D-µSPE ⁱ	2.7 – 15	UHPLC-FD	J. Chromatogr. A 1436				
	(25 mg)				(2016) 42 [10]				
16 PAHs	CIM-80	D-µSPE ^h	0.75 - 9.3	UHPLC-FD	Present work				
	20 mg)								
Carbamazepine,	CIM-80	D-µSPE ^h	0.090 - 21	UHPLC-UV	Present work				
atrazine, progesterone,	(20 mg)		µg∙L-1						
methylparaben,									
benzophenone, estrone									
& triclosan									
^a N-vinylpyrrolidone polymer	•	^f fabric-phase sorptive extraction							
^b bar-adsorptive microextract	ion	^g Quick, Easy, Cheap, Effective, Rugged, and Safe dispersive extraction method							
^c miniaturized solid-phase ext	traction	^h dispersive miniaturized solid-phase extraction							
"multiwalled carbon nanotub	es	¹ magnetic-based dispersive miniaturized solid-phase extraction							
-soi-gei poiy(tetranydrofurai	1)								

Table S5. Analytical performance of methods reported in the scientific literature for the determination of similar water contaminants using SPE.