Supplementary Information

Hierarchical Porous ZnMnO₃ Yolk-Shell Microspheres with Superior Lithium Storage Properties Enabled by Unique One-Step Conversion Mechanism

Xiaoru Su^a, Jian Huang^a, Bangyuan Yan^a, Zhouping Hong^a, Siyuan Li^b, Baocheng Pang^a, Yulin Luo^a, Li Feng^a, Mingjiong Zhou^{a,*}, Yongyao Xia^c

^aSchool of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P.R. China

^bState Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P.R. China

^cDepartment of Chemistry, Fudan University, Shanghai, 200433, P.R. China

Corresponding author:

E-mail address: zhoumingjiong@nbu.edu.cn (M. Zhou)

Fig. S1 The N₂ adsorption-desorption isotherms of ZnMnO₃ core-shell microspheres.

Fig. S2 Pore size distribution based on DFT method of $ZnMnO_3$ core-shell microspheres.

Fig. S3 SEM image of $ZnMnO_3$ core-shell microspheres obtained by the vigorous ultrasound.

Fig. S4 Cycling life at the same current density of 400 mA g^{-1} : (a) the data as shown in Fig. 4; (b) the active material loading is 2.3 mg cm⁻²; (c) the mass ratio of conductive carbon decreases by 10 wt%.

Sample	Morphology	First charge capacity	Cycles	Capacity retention	References
6001	60 00-EXA	(mAh g ⁻¹)	1.2	(%)	
ZnMnO ₃	Nanorod	~600	300	63	[5]
ZnMnO ₃	Porous spherulite	~890	50	89	[10]
ZnMnO ₃	Yolk-shell microsphere	~600	300	90	

Table 1 Comparsion of electrochemical properties of $ZnMnO_3$ with different morphology.