Electronic supplementary information

Mesoporous Tungsten Carbide Nanostructure as a Promising Cathode Catalyst Decreases Overpotential in Li-O₂ Battery

Cathode	Electrocatalyst	Current	Overpotential	Ref
		density	at first cycle	
Cr ₂ O ₃ -MNT/Super	Cr ₂ O ₃ -MNT	100 mA g ⁻¹	1.09 V	1
P/PVDF				
Co ₄ N/CNF	Co ₄ N	200 mA	~1.23 V (at	2
		g^{-1}	700 mAh g ⁻¹)	
C-Co ₃ O ₄ IO/KB/PVDF	C-Co ₃ O ₄ IO	100 mA g ⁻¹	1.21 V	3
Co ₃ O ₄ IO/KB/PVDF	Co ₃ O ₄ IO	100 mA g ⁻¹	1.13 V	3
MnCo-MOF-74/KB/PVDF	MnCo-MOF-74	200 mA	1.26 V	4
		g^{-1}		
nitrogen-doped LaNiO3	nitrogen-doped	250 mA	1.24 V	5
/Vulcan XC-72/PVDF	LaNiO ₃	\mathbf{g}_{cat}^{-1}		
LaCo _{0.8} Fe _{0.2} O ₃ @rGO	LaCo _{0.8} Fe _{0.2} O ₃ @rGO	200 mA	0.98 V	6
/KB/PVDF		g^{-1}		
MoC1-x/HSC/PVDF	MoC1-x/HSC	100 mA g ⁻¹	0.58 V	7
Ru/r-hGO mesh	Ru	0.1 A cm ⁻²	~0.9 V	8
Mo ₂ C-NR@11NC	Mo ₂ C-NR@11NC	100 mA g ⁻¹	0.28 V	9
Mo ₂ C-NR@5NC	Mo ₂ C-NR@5NC	100 mA g ⁻¹	0.45 V	9
Mo ₂ C-NR@16NC	Mo ₂ C-NR@16NC	100 mA g ⁻¹	0.52 V	9
WC-1/Super P/PTFE	WC-1	100 mA g ⁻¹	0.93 V	This
		(0.06 mA		work
		cm ⁻²)		
WC-1/Super P/PTFE	WC-1	100 mA g ⁻¹	0.34 V (with	This
		(0.06 mA	LiI)	work
		cm ⁻²)		

Tab. S1 Overpotential comparisons of different electrocatalysts in cathode at first cycle.^a

a Overpotential is denoted as the potential difference at half-capacity.

The overpotentials of Li-O_2 cells with different electrocatalysts have been compared. The results are listed in **Tab. S1**. According to the data, the catalyst M-WC-1 used in our research displays good proeprty in reducing the overpotentials when comparing with the state-of-the-art electrocatalysts used in Li-O_2 cells in recent reports.

Fig. S1 Structural characterization of typical SBA-15 silica template and nitrogen adsorptiondesorption isotherms of SBA-15.

Fig. S2 Nitrogen adsorption-desorption isotherms of g-C₃N₄ samples and FT-IR spectra of g-C₃N₄.

In **Fig. S2**, $g-C_3N_4-2$ was synthesized by vacuuming for 5 hours and calcining at 550 °C for 5 hours. $g-C_3N_4-3$ was synthesized by vacuuming for 4 hours and calcining at 580 °C for 4 hours. $g-C_3N_4-4$ was synthesized by vacuuming for 4 hours and calcining at 550 °C for 5 hours. The specific surface areas of $g-C_3N_4-2$, $g-C_3N_4-3$, $g-C_3N_4-4$ are 259.0, 223.0, 160.0 m² g⁻¹, respectively.

Fig. S3 Cycles of Li-O₂ batteries with WC-2 (a), WC-3 (b), WC-4 (c), g-C₃N₄ (d) and hard carbon (e) under limited capacity of 500 mAh g⁻¹ at 100 mA g⁻¹.

Fig. S4 Cycles of Li-O₂ batteries with WC-1 under limited capacity of 1000 mAh g⁻¹ at 100 mA g⁻¹.

References

1. X.-Z. Zhang, D. Han, Y.-B. He, D.-Y. Zhai, D. Liu, H. Du, B. Li and F. Kang. J. Mater. Chem. A, 2016, 4, 7727-7735.

2. K. R. Yoon, K. Shin, J. Park, S.-H. Cho, C. Kim, J.-W. Jung, J. Y. Cheong, H. R. Byon, H. M. Lee and I.-D. Kim. *ACS Nano*, 2018, **12**, 128-139.

3. S. A. Cho, Y. J. Jang, H.-D. Lim, J.-E. Lee, Y. H. Jang, T.-T. H. Nguyen, F. M. Mota, D. P. Fenning, K. Kang, Y. Shao-Horn and D. H. Kim. *Adv. Energy Mater.*, 2017, **7**, 1700391.

4. S. H. Kim, Y. J. Lee, D. H. Kim and Y. J. Lee. ACS Appl. Mater. Interfaces, 2018, 10, 660-667.

5. J. Zhang, C. Zhang, W. Li, Q. Guo, H. Gao, Y. You, Y. Li, Z. Cui, K.-C. Jiang, H. Long, D. Zhang and S. Xin. *ACS Appl. Mater. Interfaces*, 2018, **10**, 5543-5550.

6. J. G. Kim, Y. Kim, Y. Noh, S. Lee, Y. Kim and W. B. Kim. ACS Appl. Mater. Interfaces, 2018, 10, 5429-5439.

7. Y. Xing, Y. Yang, R. Chen, M. Luo, N. Chen, Y. Ye, J. Qian, L. Li, F. Wu and S. Guo. *Small*, 2018, 1704366.

8. S. D. Lacey, D. J. Kirsch, Y. Li, J. T. Morgenstern, B. C. Zarket, Y. Yao, J. Dai, L. Q. Garcia, B. Liu, T. Gao, S. Xu, S. R. Raghavan, J. W. Connell, Y. Lin and L. Hu. *Adv. Mater.*, 2018, **30**, 1705651.

9. G. Sun, Q. Zhao, T. Wu, W. Lu, M. Bao, L. Sun, H. Xie and J. Liu. ACS Appl. Mater. Interfaces, 2018, 10, 6327-6335.