Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

## Electrospinning preparation of large surface area, hierarchically porous, and interconnected carbon nanofibrous network using polysulfone as a sacrificial polymer for high performance supercapacitor

Wenyu Wang,\*a Hongjie Wang, a He Wang, Xin Jin, Jialu Li, a and Zhengtao Zhu\*,a,c

<sup>a</sup> State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles,

Tianjin Polytechnic University, Tianjin 300387, China.

<sup>b</sup> School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387,

China.

<sup>c</sup> Department of Chemistry and Applied Biological Science, South Dakota School of Mines and

Technology, Rapid City, SD 57701, USA.

\*Corresponding Author: E-mail: wwy-322@126.com (Wenyu Wang); E-mail: Zhengtao.Zhu@sdsmt.edu (Zhengtao Zhu)



Figure S1. SEM images of electrospun PAN nanofibrous mat (a, a') and electrospun PSF/PAN

nanofibrous mat (b, b')



Figure S2. HRTEM image of CNFM-20.



Figure S3. Pore size distribution of CNFM-0 and CNFM-20.



Figure S4. XPS spectra of CNFM-0 and CNFM-20.



Figure S5. DSC curves of PSF, CNFM-0 and CNFM-20.



**Figure S6.** GCD curves of CNFM-0 (a) and CNFM-20 (b) at current densities from 1.0 A/g to 50 A/g in a three-electrode configuration and 2.0 M KOH electrolyte.



**Figure S7.** GCD curves of the CNFM-20 based electrode under the current density of 1.0 A/g at the 1<sup>st</sup> and the 10000<sup>th</sup> cycle.



Figure S8. The Bode plots for the CNFM-0 and CNFM-20 electrodes.

| Carbon<br>source    | Pore-<br>forming<br>agent      | Carbonization<br>temperature<br>(°C) | Connected<br>carbon<br>fiber<br>network | S <sub>BET</sub><br>(m²/g) | V <sub>tot</sub><br>(cm <sup>3</sup> /g) | Capacitance<br>(F/g)             | Cycling<br>numbers | Retention<br>rate | Ref.        |
|---------------------|--------------------------------|--------------------------------------|-----------------------------------------|----------------------------|------------------------------------------|----------------------------------|--------------------|-------------------|-------------|
| PAN                 | PSF                            | 800                                  | Yes                                     | 763                        | 0.51                                     | 272<br>(1.0 A/g)                 | 5000               | 100               | Our<br>work |
| PAN                 | PVP/CO <sub>2</sub>            | 970                                  | Yes                                     | 531                        | -                                        | 221                              | -                  | -                 | 1           |
| PAN                 | PMMA                           | 800                                  | No                                      | 224                        | 0.25                                     | 210<br>(2 mV/s)                  | 2000               | 100               | 2           |
| PAN                 | Steam                          | 700                                  | No                                      | 1230                       | 0.55                                     | 173<br>(10 mA/g)                 | -                  | -                 | 3           |
| PAN                 | Zinc acetate                   | 800                                  | No                                      | 1404                       | 0.327                                    | 178.2<br>(1 mA/cm <sup>2</sup> ) | 1000               | 75                | 4           |
| PAN                 | $ZnCl_2$                       | 800                                  | No                                      | 550                        | 0.34                                     | 130<br>(2 mV/s)                  | -                  | -                 | 5           |
| PAN                 | CaCO <sub>3</sub>              | 800                                  | No                                      | 679                        | 0.41                                     | 251<br>(0.5 A/g)                 | 5000               | 88                | 6           |
| PAN                 | СА                             | 800                                  | No                                      | 1160                       | 0.807                                    | 245<br>(1 mA/cm <sup>2</sup> )   | 1000               | 96                | 7           |
| PAN                 | Phenylsilane                   | 800                                  | No                                      | 800                        | -                                        | 180<br>(20 mA/cm <sup>2</sup> )  | -                  | -                 | 8           |
| PAN                 | H <sub>3</sub> PO <sub>4</sub> | 800                                  | No                                      | 709                        | 0.356                                    | 156<br>(0.5 A/g)                 | 1000               | 96.5              | 9           |
| Resole              | КОН                            | 800                                  | No                                      | 597                        | 0.27                                     | 256<br>(0.2 A/g)                 | 1000               | 92                | 10          |
| Novolac<br>phenolic | КОН                            | 750                                  | No                                      | 1520                       | 0.71                                     | 202<br>(1 mA/cm <sup>2</sup> )   | 10000              | 92                | 11          |
| cellulose           | CO <sub>2</sub>                | 1000                                 | Yes                                     | 520                        | 0.3                                      | 241.4<br>(1.0 A/g)               | 10000              | 99.9              | 12          |
| PBI                 | Steam                          | 800                                  | No                                      | 1220                       | 0.2                                      | 178<br>(5 mA/g)                  | -                  | -                 | 13          |
| PAA                 | Steam                          | 750                                  | No                                      | 1453                       | 0.563                                    | 175<br>(1000 mA/g)               | -                  | -                 | 14          |

**Table S1:** Performance of supercapacitors based on electrospun carbon nanofibrous materials

## Reference

- 1 H. Niu, J. Zhang, Z. Xie, X. Wang and T. Lin, *Carbon*, 2011, **49**, 2380–2388.
- 2 C.-C. Lai and C.-T. Lo, *Electrochim. Acta*, 2015, **183**, 85–93.

3 C. Kim and K. S. Yang, *Appl. Phys. Lett.*, 2003, **83**, 1216–1218.

4 C. H. Kim and B.-H. Kim, J. Power Sources, 2015, 274, 512–520.

5 C. Kim, B. Ngoc, K. Yang, M. Kojima, Y. Kim, Y. Kim, M. Endo and S. Yang, *Adv. Mater.*, 2007, **19**, 2341–2346.

6 L. Zhang, Y. Jiang, L. Wang, C. Zhang and S. Liu, *Electrochim. Acta*, 2016, **196**, 189–
196.

7 Y.-W. Ju, S.-H. Park, H.-R. Jung and W.-J. Lee, *J. Electrochem. Soc.*, 2009, **156**, A489–A494.

8 B.-H. Kim, K. S. Yang, Y. H. Bang and S. R. Kim, *Mater. Lett.*, 2011, **65**, 3479–3481.

9 M. Zhi, S. Liu, Z. Hong and N. Wu, *RSC Adv.*, 2014, 4, 43619–43623.

10 C. Ma, Y. Song, J. Shi, D. Zhang, X. Zhai, M. Zhong, Q. Guo and L. Liu, *Carbon*, 2013,
51, 290–300.

11 V. Barranco, M. A. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Ibanez,

F. Agullo-Rueda, J. M. Amarilla and J. M. Rojo, J. Phys. Chem. C, 2010, 114, 10302–10307.

12 J. Cai, H. Niu, H. Wang, H. Shao, J. Fang, J. He, H. Xiong, C. Ma and T. Lin, *J. Power Sources*, 2016, **324**, 302–308.

13 C. Kim, S.-H. Park, W.-J. Lee and K.-S. Yang, *Electrochim. Acta*, 2004, **50**, 877–881.

14 C. Kim, Y.-O. Choi, W.-J. Lee and K.-S. Yang, *Electrochim. Acta*, 2004, **50**, 883–887.