Supporting information

An "off-on-off" sensor for sequential detection of Cu²⁺ and hydrogen sulfide based on naphthalimide-rhodamine B derivative and its application in dual-channel cell imaging

Shuai Wang, Haichang Ding, Yuesong Wang, Congbin Fan, Yayi Tu, Gang Liu*, Shouzhi Pu*

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China

*Corresponding author: E-mail address: liugang0926@163.com (G. Liu); pushouzhi@tsinghua.org.cn (S. Pu), Tel. & Fax: +86-791-83831996.

Contents

 Table.
 1. Comparison of the analytical performance of the sensors for copper/sulfide determination.

Fig. S1. ¹H NMR spectrum of 1 in CD₂Cl₂.

Fig. S2. ${}^{13}C$ NMR spectrum of sensor 1 in CD₂Cl₂.

Fig. S3. The ESI-MS spectrum of 1.

Fig. S4. Nonlinear curve fitting of the ratio change of absorbance (A_{564}/A_{425}) from 0 to 35 μ M for 1 with Cu²⁺ in CH₃CN–H₂O (9/1, v/v) solution at room temperature.

Fig. S5. The limit of detection (LOD) of the ratio change of absorbance (A_{564}/A_{425}) of sensor 1 towards Cu²⁺ by UV-vis measured.

Fig. S6. Nonlinear curve fitting of the fluorescence titration data from 0 to 40 μ M for 1 with Cu²⁺ at 610 nm in CH₃CN–H₂O (9/1, v/v) solution at room temperature.

Fig. S7. The limit of detection (LOD) of 1 towards Cu^{2+} by fluorescence measured at 610 nm.

Fig. S8. Nonlinear curve fitting of the ratio change of absorbance (A_{564}/A_{425}) from 0 to 35 μ M for 1 with Cu²⁺ in CH₃CN–H₂O (9/1, v/v) solution at room temperature.

Fig. S9. The limit of detection (LOD) of the ratio change of absorbance (A_{564}/A_{425}) of sensor 1 towards Cu^{2+} by UV-vis measured.

Fig. S10. Nonlinear curve fitting of the fluorescence titration data from 0 to 40 μ M for 1-Cu²⁺ complex towards H₂S at 610 nm in CH₃CN-H₂O (7/3, v/v) solution at room temperature.

Fig. S11. The limit of detection (LOD) of 1-Cu²⁺ complex towards H_2S by fluorescence measured at 610 nm.

Fig. S12. Normalized spectral overlap of fluorescence spectrum of naphthalimide (green) and absorption spectrum of rhodamine B (pink) in CH₃CN–H₂O (9/1, v/v) solution.

Sensor	$\lambda_{ex}/\lambda_{em}$ (nm)	Selectivity	Approaches	LOD	Ref.
	470/517	Cu ²⁺	Fluorescence quench	1.0 × 10 ⁻⁷ M	Chem. Commun., 2009, 0 , 7390– 7392
носторон		S ²⁻	Fluorescence increase	$4.2 \times 10^{-7} \text{ M}$	
нофотон	101/522	Cu ²⁺	Fluorescence quench	1.08 × 10⁻⁵ M	Dalton Trans., 2012, 41 , 5799– 5804
OF NH	454/323	H ₂ S	Fluorescence increase	1.7 × 10 ⁻⁶ M	
	540/600	Cu ²⁺	Fluorescence quench	no data	Chem. Commun., 2013, 49 , 7510 7512
		HS ⁻¹	Fluorescence increase	1.0 × 10⁻⁵ M	
	243/436	Cu ²⁺	Fluorescence quench	2.77 × 10 ⁻⁶ M	<i>Dalton Trans.,</i> 2014, 43 , 5815– 5822
O' Na		S ²⁻	Fluorescence increase	2.51 × 10 ⁻⁶ M	
	510/604	Cu ²⁺	Fluorescence quench	8.95 × 10⁻ ⁸ M	J. Mater. Chem. B, 2017, 5 , 8957 8966
		S ²⁻	Fluorescence increase	1.36 × 10 ⁻⁷ M	
		Cu ²⁺	Fluorescence increase	2.43 × 10 ⁻⁸ M	<i>RSC Adv.,</i> 2014, 4 , 5718–5725
	530/581	S ²⁻	colorimetric	no data	
	325/528,610	Cu ²⁺	Fluorescence increase	2.6 × 10 ⁻⁷ M	This work
		H ₂ S	Fluorescence quench	2.3 × 10 ⁻⁷ M	

Table 1.

Fig. S3.

Fig. S4.

Fig. S5.

Fig. S6.

Fig. S7.

Fig. **S8**.

Fig. S9.

Fig. S10.

Fig. S11.

Fig. S12.