1	Supporting information
2	Comparative study on synchronous adsorption of arsenate and fluoride in aqueous solution onto MgAlFe-LDHs
3	with different intercalation anions
4	
5	Lu Hongtao ^{a,b} , Liu Shuxia ^a , Zhang Hua ^a , Qiu Yanling ^c , Yin Daqiang ^c , Jianfu Zhao ^a , Zhu Zhiliang ^{a,c} *
6	
7	^a State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China;
8	^b Post doctoral Research Station, College of Civil Engineering, Tongji University, Shanghai 200092, China
9	^c Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092,
10	China;
11	
12	Correspondence information:
13	Zhiliang Zhu, Professor
14	State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092,
15	China.
16	E-mail: zzl@tongji.edu.cn
17	Phone: +86-21-6598 2426, Fax: +86-21-6598 4626
18	

Supporting information

Isotherm	Constants	MgAlFe-CLDH	MgAlFe-Cl-LDH	MgAlFe-NO ₃ -LDH
Langmuir	Q _m (mg⋅g⁻¹)	158.2	79.69	179.9
	K _L (L∙mg ⁻¹)	0.0311	2.532	0.1819
	R ²	0.9420	0.9797	0.9579
Freundlich	$K_{F}(mg \cdot g^{-1})(L \cdot mg^{-1})^{-1/n}$	9.016	40.11	60.10
	n	1.622	4.039	3.896
	R ²	0.9694	0.9600	0.9932
Sips	Q _m (mg⋅g ⁻¹)	200	94.30	1027
	K _s (L·mg⁻¹) ^m	0.0379	1.078	0.0623
	m	0.8124	0.6258	0.2842
	R ²	0.9554	0.9968	0.9936

Table S1 Fitting curve parameters of arsenic adsorption isothermal equation

Table S2 Fitting curve parameters of arsenic adsorption kinetic equation

	Pseudo first-order kinetic model			Pseudo se	Pseudo second-order kinetic model		
Materials	Q _e	K1	R ²	Q _e	K ₂	R ²	
	(mg·g⁻¹)	(min ⁻¹)		(mg·g⁻¹)	g∙(mg∙min)⁻¹		
MgAlFe-CLDH	48.22	0.0257	0.8752	50.76	0.0008827	0.9954	
MgAlFe-Cl-LDH	39.74	0.0153	0.7647	43.29	0.0005218	0.9839	
MgAIFe-NO ₃ -LDH	40.45	0.0149	0.7730	43.93	0.0004858	0.9799	

Table S3 Fitting curve parameters of fluoride adsorption isothermal equation

Isotherm	Constants	MgAlFe-CLDH	MgAlFe-Cl-LDH	MgAlFe-NO ₃ -LDH
Langmuir	Q _m (mg⋅g⁻¹)	29.78	10.27	18.62
	K∟ (L·mg ⁻¹)	0.08618	0.1229	0.1015
	R ²	0.9460	0.9586	0.9598
Freundlich	$K_F(mg \cdot g^{-1})(L \cdot mg^{-1})^{-1/n}$	3.899	1.532	2.742
	n	1.922	2.021	2.016
	R ²	0.9698	0.9049	0.9658
Sips	Q _m (mg⋅g ⁻¹)	-	8.384	54.83
	K _s (L⋅mg ⁻¹) ^m	-	0.05914	0.04937
	m	-	1.705	0.5856
	R ²	-	0.9713	0.9665

Table S4 Fitting curve parameters of fluoride adsorption kinetic equation

	Pseudo first-order kinetic model			Pseudo second-order kinetic model		
Materials	Q _e (mg·g ^{−1})	K ₁ (min ⁻¹)	R ²	Q _e (mg·g⁻¹)	K₂ (g∙mg⁻¹∙min⁻¹)	R ²
MgAlFe-CLDH	9.166	0.0151	0.8488	9.922	0.00235	0.9888
MgAlFe-Cl-LDH	7.843	0.0157	0.7964	8.469	0.00286	0.9902
MgAlFe-NO ₃ -LDH	8.245	0.0493	0.9233	8.577	0.00951	0.9923

Table S5 Fitting curve parameters of adsorption isothermal equation of binary system

		As(V)	F
MgAlFe-CLDH	K _F (mg·g ⁻¹)(L·mg ⁻¹) ^{-1/n}	5.975	0.9692
(Freditalicit)	n	2.376	1.902
	R ²	0.8906	0.9437
MgAlFe-Cl-LDH	Q _m (mg⋅g ⁻¹)	45.51	15.71
(Sips)	K _s (L⋅mg ⁻¹) ^m	0.5986	0.0560
	m	1.305	1.025
	R ²	0.9484	0.9988
MgAlFe-NO ₃ -LDH	Q _m (mg⋅g ⁻¹)	39.43	42596
(Sips)	K₅(L·mg ⁻¹) ^m	11.64	0.00002769
	m	1.557	0.64
	R ²	0.9790	0.9888

Fig. S1 The full-range XPS spectra of MgAlFe-CLDH

Fig. S2 The full-range XPS spectra of MgAlFe-Cl-LDH and Peak of Cl 2p

Fig. S3 The full-range XPS spectra of MgAlFe-NO₃-LDH

Fig. S4 (a) Effect of dosage on arsenic adsorption; (b) Effect of pH on arsenic adsorption

Fig. S5 (a) Effect of dosage on fluoride adsorption; (b) Effect of pH on fluoride adsorption

Fig. S6 (a) SEM image and (b) EDS figure of MgAlFe-NO₃-LDH after adsorption of arsenic and fluoride