Template conversion of MoO₃ to MoS₂ nanoribbons: synthesis and electrochemical properties

L. Vieira^a, J. R. Martins Neto^b, O. P. Ferreira^c, R. M. Torresi^b, S. I. Cordoba de Torresi^b and O. L. Alves^a

Support Information

SI 1: Characterization of the precursor MoO₃•2 H₂O: a) SEM image, b) TG-DTA curves, c) Raman spectrum and d) XRD pattern.

SI 2: Diameter measurement of SEM images of as-prepared MoO₃ nanoribbons.

SI 3: a) Cyclic voltammogram at 10 mV s⁻¹of a MoO₃ film on ITO in 1 mol $L^{-1}Mg(ClO_4)_2$ in PC. The cathodic peak shows the irreversible intercalation of Mg^{2+} in MoO₃.

SI 4: TEM images of MoS_2 obtained through heating from room temperature to 800 °C at 30°C/min under 5 %/95 % H_2/N_2 (96 mL min⁻¹). H_2S was streamed after the temperature reached 400 °C. The sample was treated at 800 °C for 30 min.