Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Electronic Supporting Information

Ultralow Power Consumption gas Sensor based on Selfheated Nanojunction of SnO₂ Nanowires

Trinh Minh Ngoc¹, Nguyen Van Duy¹,*, Hugo Nguyen², Chu Manh Hung¹, Nguyen Ngoc Trung³, Nguyen Duc Hoa¹, Nguyen Van Hieu⁴,5

¹⁾International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi, Viet Nam

²⁾School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Viet Nam

³⁾Uppsala University, Department of Engineering Sciences, Lägerhyddsvägen 1, 751 21 Uppsala, Sweden

⁴⁾Faculty of Electrical and Electronic Engineering, Thanh Tay Institute for Advanced Study (TIAS), Thanh Tay University, Yen Nghia, Ha-Dong district, Hanoi 10000, Viet Nam

⁵⁾Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group, 167 Hoang Ngan, Hanoi 10000, Viet Nam

*E-mail: nguyenvanduy@itims.edu.vn

Figure S1. (A) Transient resistance vs. time upon exposure to 1 ppm NO₂ measured at different temperatures of sensor S1; (B) sensor response as a function of working temperatures.

Figure S2. Transient resistance vs. time upon exposure to various NO₂ concentrations measured at different powers of sensor S1.

Figure S3. Low magnification SEM image of sensor S2 after damage.

Figure S4. Stability of sensor S1 after a month continuous operation at supplied power of 10 μ W.

