Supporting Information

Expedient Synthesis of Eumelanin-Inspired 5,6-Dihydroxyindole-2-Carboxylate Ethyl Ester Derivatives

Andrew H. Aebly, Jeffrey N. Levy, Benjamin J. Steger, Jonathan C. Quirke, and Jason M. Belitsky*

Oberlin College, Chemistry and Biochemistry Department, 119 Woodland Street, Oberlin, OH 44074, USA

E-mail: Jason.Belitsky@oberlin.edu

Table of Contents

General Information	1
Tables	1
Experimental Procedures	2
References	10
NMR Spectra	11
High Resolution Mass Spectra	73

General Information

DMICE was purchased from Alfa Aesar, BroadPharm, and Oxchem. All reagents, except for *DMICE and N-bromosuccinimide*, were used as received from the commercial vendor. *DMICE* was dissolved in a mixture of dichloromethane/THF and filtered through a short silica plug with EtOAc prior to use. *N*-bromosuccinimide was recrystallized from benzene. Solvents were purchased from Sigma-Aldrich in anhydrous form and used as received. Column chromatography was performed using silica gel (80-200 mesh, JT Baker). The ¹H and ¹³C NMR spectra were obtained on a Varian 400 MHz instrument using either CDCl₃ or d₆-acetone (Cambridge Isotopes Laboratories), correcting the chemical shifts (reported in in ppm) to the corresponding residual deuterated solvent peak. The following abbreviations were used to identify the multiplicities in the NMR spectra: s (singlet), d (doublet), t (triplet), q (quartet), b (broad), and apt (apparent). High resolution mass spectra (HRMS) were obtained using an Agilent Q-TOF HPLC-MS (University of Michigan) or Kratos MS25 double focusing mass spectrometer (Case Western Reserve University).

Tables

Table S1 Optimization of Suzuki coupling for 7

^aReaction conditions: **7** (0.04 mmol),4-methoxyphenylboronic acid (0.096 mmol), XPhos Pd G2 (0.0016 mmol), K₃PO₄ (0.12 mmol), solvent (0.083 M), 3.5h.^bDetermined from crude ¹H-NMR. ^cIsolated yield. ^d4-methoxyphenylboronic acid (0.084 mmol).

Table S2 ¹ H-NMR indole N-H chemical	shift
---	-------

	3-Substituents		4,7-Substituents	
Substituent	Compound #	Chemical Shift	Compound #	Chemical Shift
4-Phenyl-NMe ₂	9b	8.74	10b	8.71
4-Phenyl-OMe	9a	8.80	10a	8.64
4-Phenyl-Me	9c	8.81	10c	8.65
4-Phenyl-F	9d	8.83		
Phenyl			10d	8.67
4-Phenyl-CF ₃	9e	9.01	10e	8.64
4-Phenyl-CN	9f	9.05	10f	8.67
4-Phenyl-NO ₂	9g	10.94*	10g	8.73
3,4-OMe	9h	8.79	10h	8.70
1-naphthyl	9i	9.09		
3-thiophene	9j	8.82	10i	8.81
3-furan	9k	8.97	10j	8.84
2-benzofuran	91	8.98	10k	10.34
4-indole	9m	8.98		
6-indole	9n	8.84	101	8.72

Spectra recorded in CDCl₃ except where noted. Chemical shift is in ppm. *In acetone-d6

Experimental Procedures

Synthesis of **5**¹

To a 50-mL round bottom flask added ethyl 5,6-dimethoxyindole-2-carboxylate **1** (1 equiv, 0.50 mmol) and partially dissolved in MeCN (2 mL). A solution of NBS (1.05 equiv, 0.525 mmol) in MeCN (7 mL) was added dropwise to the reaction flask over 5 min and allowed to stir at room temperature for an additional 30 min. The reaction was diluted with H₂O and filtered at 0 °C to produce **6**: 87% yield (off-white solid). ¹**H** NMR (400 MHz, CDCl₃) δ 8.83 (s, 1H), 6.98 (s, 1H), 6.82 (s, 1H), 4.43 (q, *J* = 7.2 Hz, 2H), 3.97 (s, 3H), 3.94 (s, 3H), 1.44 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 151.2, 147.1, 130.5, 122.7, 121.4, 101.1, 98.1, 93.9, 61.2, 56.3, 56.2, 14.5.

To a scintillation vial covered in tin foil added ethyl 5,6-dimethoxyindole-2-carboxylate **1** (1 equiv, 0.50 mmol) and NBS (4.0 equiv, 2.0 mmol). The starting materials were dissolved in THF (10 mL) and stirred at 65 °C for 2 h, then concentrated *in vacuo*. The crude product was dissolved in dichloromethane, washed with H₂O, dried with MgSO₄, concentrated and purified via column chromatography (silica, 8:1 hex/EtOAc) to produce **SI-1**: 69% yield (white solid). ¹H NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 7.01 (s, 1H), 4.46 (q, *J* = 7.0 Hz, 2H), 4.06 – 3.80 (m, 6H), 1.46 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 150.6, 147.8, 129.4, 124.7, 123.9, 101.4, 100.3, 98.4, 61.7, 61.4, 56.6, 14.5. HRMS (ESI) calculated for C₁₃H₁₄NO₄Br₂ ([M+H]⁺): 405.9284; found: 405.9282; calculated ([M+2+H]⁺): 407.9269; found: 407.9265; calculated ([M+4+H]⁺): 409.9249; found: 409.9244.

Synthesis of 7

To a 20mL-scintillation vial covered in tin foil added ethyl 5,6-dimethoxyindole-2-carboxylate **1** (1 equiv, 0.80 mmol), N-bromosuccinimide (4 equiv, 3.20 mmol) and dissolved in acetonitrile (8 mL). The reaction was stirred at 65 °C for 24 h, concentrated *in vacuo* and filtered through a silica plug (3:1 to 2:1 hexanes:EtOAc) to yield **6**. The material was used in the following reaction without further purification. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 4.47 (q, *J* = 7.1 Hz, 2H), 3.97 (s, 3H), 3.90 (s, 3H), 1.46 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 150.9, 147.9, 131.9, 126.3, 120.6, 110.4, 99.1, 98.7, 62.0, 61.7, 61.3, 14.5.

Adapted from Tani *et al.*² In a round-bottom flask **6** was dissolved in AcOH (0.07 M). To the reaction mixture LiBr (2.1 equiv, 0.6288 mmol), *m*-dimethoxybenzene (2.1 equiv, 0.6288 mmol) H₂SO₄ (2.1 equiv, 0.6288 mmol) was added and stirred at 65 °C for 1h. After cooling to room temperature, the product was precipitated out of solution with the addition of ice and filtered. The crude material was then purified via column chromatography (silica, hexanes: EtOAc: 8:1) to produce 7: 66% yield, two steps (white solid). ¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 7.26 (s, 1H), 4.43 (q, *J* = 7.1 Hz, 2H), 3.97 (s, 3H), 3.92 (s, 3H), 1.43 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 150.3, 147.1, 132.5, 128.7, 124.9, 110.0, 109.5, 99.0, 61.7, 61.6, 61.5, 14.5. HRMS (ESI) calculated for C₁₃H₁₄NO₄Br₂ ([M+H]⁺): 405.9284; found: 405.9279; calculated ([M+2+H]⁺): 407.9269; found: 407.9259; calculated ([M+4+H]⁺): 409.9249; found: 409.9236.

Synthesis of 8

Adapted from Buchgraber *et al.*³ To a 20mL-scintillation vial added ethyl 5,6-dimethoxyindole-2carboxylate **1** (1 equiv, 0.80 mmol) and dissolved in DMF (0.8 mL). KOH (powdered, 5.03 eq, 4.024 mmol) was added to the reaction vial and stirred at 0°C for 10 min. Over 5-10 minutes, 5 portions of I₂ (1.05 equiv, 0.84 mmol) were added to the reaction vial and continued stirring at 0°C for an additional 30 min, then at r.t. for 45 min. The reaction was quenched by addition of sat NH₄Cl (8 mL) and sat Na₂S₂O₃ (8 mL). The precipitated solid was filtered, then re-dissolved in a mixture of ethyl acetate/dichloromethane, dried with MgSO₄ and concentrated to produce **8**: 84% yield (off-white solid). ¹H NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 6.89 (s, 1H), 6.82 (s, 1H), 4.43 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 3H), 3.94 (s, 3H), 1.45 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 151.2, 147.2, 131.0, 125.7, 125.0, 103.3, 93.7, 65.9, 61.3, 56.4, 56.3, 14.5. HRMS (ESI) calculated for C₁₃H₁₅NO₄I ([M+H]⁺): 376.0040, found: 376.0038.

General Procedure for Suzuki Coupling of 8

To a 1-dram reaction vial with a septum-cap added XPhosPd G2 (4 mol%, 0.0024 mmol), **8** (1 equiv, 0.06 mmol) and corresponding boronic acid (1.25 equiv, 0.075 mmol), evacuated with vacuum and purged with N₂. To the reaction vial added 1,4-dioxane (0.66 mL) and 0.5 M K₃PO₄ (3 equiv, 0.18 mmol). The reaction mixture was heated at 75 °C for 20 h and quenched with the addition of H₂O. The crude mixture was extracted with EtOAc (3 x 4 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. The pure product was isolated via column chromatography (silica, hexanes: EtOAc: 3:2 to 2:1).

ethyl 5,6-*dimethoxy*-3-(4-*methoxyphenyl*)-1*H*-*indole*-2-*carboxylate* (**9a**): 97% yield (white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.80 (s, 1H), 7.49 (d, J = 8.6 Hz, 2H), 7.01 (d, J = 8.6 Hz, 2H), 6.97 (s, 1H), 6.86 (s, 1H), 4.27 (q, J= 7.1 Hz, 2H), 3.95 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H), 1.26 (d, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.0, 158.9, 150.5, 146.4, 131.7, 130.9, 126.2, 124.3, 121.3, 121.0, 113.5, 101.7, 93.7, 60.6, 56.3, 56.2, 55.4, 14.4. **HRMS** (ESI) calculated for C₂₀H₂₁NO₅ ([M]⁺): 355.1420; found: 355.1426.

ethyl 3-(4-(dimethylamino)phenyl)-5,6-dimethoxy-1H-indole-2-carboxylate (**9b**): 83% yield (off-white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.74 (s, 1H), 7.48 (d, J = 8.7 Hz, 2H), 7.05 (s, 1H), 6.89 – 6.80 (m, 3H), 4.29 (q, J = 7.1 Hz, 2H), 3.95 (s, 3H), 3.86 (s, 3H), 3.03 (s, 6H), 1.28 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.1, 150.4, 149.7, 146.2, 131.4, 131.1, 125.0, 121.0, 121.0, 112.1, 102.1, 93.6, 60.5, 56.3, 56.2, 40.8, 14.4. **HRMS** (ESI) calculated for C₂₁H₂₅N₂O₄ ([M+H]⁺): 369.1809, found: 369.1819.

(9e): 90% (white solid). ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR) δ 9.01 (s. 1H), 7.72 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 6.90 (s, 1H), 6.89 (s, 1H), 4.28 (q, J = 7.1 Hz, 2H), 3.96 (s, 3H), 3.86 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃)δ 161.7, 150.8, 146.9, 138.0, 130.9, 130.9 (2C), 129.2 (${}^{2}J_{C-F} = 32$ Hz), 124.9 (${}^{3}J_{C-F} = 4$ Hz), 124.5 (${}^{1}J_{C-F} = 272$ Hz), 122.8, 121.7, 120.7, 101.1, 93.8, 60.9, 56.3, 56.2, 14.24. HRMS (ESI) calculated for $C_{20}H_{19}NO_4F_3$ ([M+H]⁺): 394.1261, found: 394.1265.

MeO

ÒEt

ethyl 3-(4-cyanophenyl)-5,6-dimethoxy-1H-indole-2-carboxylate (9f): 96% vield (white solid). ¹**H NMR** (400 MHz, CDCl₃) δ) δ 9.05 (s, 1H), 7.75 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 8.1 Hz, 2H), 6.89 (s, 1H), 6.87 (s, 1H), 4.28 (q, J =7.1 Hz, 2H), 3.95 (s, 3H), 3.86 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 150.8, 147.1, 139.3, 131.8, 131.4, 130.9, 122.2, 121.7, 120.4, 119.3, 110.8, 100.8, 93.8, 61.0, 56.4, 56.3, 14.3. HRMS (ESI) calculated for $C_{20}H_{19}N_2O_4$ ([M+H]⁺): 351.1339, found: 351.1342.

ethyl 5,6-dimethoxy-3-(4-nitrophenyl)-1H-indole-2-carboxylate (9g): 90% vield (vellow solid). ¹H NMR (400 MHz, Acetone- d_6) δ 10.94 (s, 1H), 8.32 (d, J = 8.8 Hz, 2H), 7.87 (d, J = 8.8 Hz, 2H), 7.10 (s, 1H), 7.03 (s, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.88 (s, 3H), 3.78 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H). 3 C NMR (101 MHz, Acetone- d_{6}) δ 161.8, 152.0, 148.4, 147.6, 142.9, 132.7, 132.6, 123.8, 123.0, 121.8, 121.0, 101.9, 95.5, 61.2, 56.5, 56.2, 14.6 **HRMS** (ESI) calculated for $C_{19}H_{19}N_2O_6$ ([M+H]⁺): 371.1238; found: 371.1237.

ethyl 3-(3,4-dimethoxyphenyl)-5,6-dimethoxy-1H-indole-2-carboxylate (**9h**): 95% yield (white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.79 (s, 1H), 7.16 – 7.09 (m, 2H), 7.01 – 6.96 (m, 2H), 6.87 (s, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.96 (s, 6H), 3.91 (s, 3H), 3.86 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.9, 150.6, 148.4, 148.4, 146.5, 130.9, 126.5, 124.4, 123.0, 121.4, 121.1, 114.1, 110.9, 101.8, 93.7, 60.7, 56.3, 56.3, 56.1, 14.5. **HRMS** (ESI) calculated for C₂₁H₂₄NO₆ ([M+H]⁺): 386.1598, found: 386.1601.

ethyl 5,6-*dimethoxy*-3-(*naphthalen*-1-*yl*)-1*H*-*indole*-2-*carboxylate* (**9i**): 87% yield (white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 9.09 (s, 1H), 7.92 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.5 Hz, 1H), 7.60 – 7.51 (m, 2H), 7.47 (ddd, J = 8.1, 6.7, 1.2 Hz, 1H), 7.34 (ddd, J = 8.3, 6.7, 1.3 Hz, 1H), 6.94 (s, 1H), 6.65 (s, 1H), 4.04 – 3.95 (m, 5H), 3.71 (s, 3H), 0.73 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.1, 150.6, 146.5, 133.7, 133.1, 132.3, 131.0, 128.4, 128.2, 127.8, 126.6, 125.8, 125.7, 125.3, 123.3, 122.1, 122.1, 101.9, 93.8, 60.4, 56.3, 56.3, 13.6. **HRMS** (ESI) calculated for C₂₃H₂₂NO₄ ([M+H]⁺): 376.1543; found: 376.1545.

MeO

MeO

ethyl 5,6-*dimethoxy*-3-(*thiophen*-3-*yl*)-1*H*-*indole*-2-*carboxylate* (**9j**): 94% yield (white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (s, 1H), 7.54 – 7.48 (m, 1H), 7.44 – 7.35 (m, 2H), 7.07 (s, 1H), 6.86 (s, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 3.95 (s, 3H), 3.89 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.2, 150.9, 146.9, 134.1, 131.3, 130.5, 124.6, 124.4, 121.9, 121.3, 119.4, 102.2, 94.0, 61.1, 56.7, 56.5, 14.7. **HRMS** (ESI) calculated for C₁₇H₁₈NO₄S ([M+H]⁺): 332.0951, found: 332.0948.

ethyl 3-(benzofuran-2-yl)-5,6-dimethoxy-1H-indole-2-carboxylate (**9I**): 96% yield (off-white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.98 (s, 1H), 7.71 (s, 1H), 7.65 (d, J = 7.3 Hz, 1H), 7.61 – 7.50 (m, 2H), 7.34 – 7.26 (m, 2H), 6.86 (s, 1H), 4.43 (q, J = 7.1 Hz, 2H), 3.99 (s, 3H), 3.96 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.1, 154.6, 151.3, 150.8, 146.8, 130.9, 129.3, 124.1, 122.9, 121.9, 121.2, 120.0, 113.2, 111.0, 106.9, 103.7, 93.4, 61.2, 56.4, 56.2, 14.6. **HRMS** (ESI) calculated for C₂₁H₂₀NO₅ ([M+H]⁺): 366.1336, found: 366.1336.

General Procedure for the Di-Suzuki Coupling of 7

To a 1-dram reaction vial with a septum-cap added XPhosPd G2 (4 mol%, 0.0024 mmol), 7 (1 equiv, 0.04 mmol) and corresponding boronic acid (2.4 equiv, 0.096 mmol), evacuated with vacuum and purged with N₂. To the reaction vial added THF (0.17 M) and 0.5 M K₃PO₄ (0.17 M). The reaction mixture was heated at 50 °C for 3.5 h and quenched with the addition of H₂O. The crude mixture was extracted with EtOAc (3 x 4 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. The pure product was isolated via column chromatography (silica, hexanes: EtOAc: 2:1 to 9:1).

ethyl 5,6-*dimethoxy*-4,7-*bis*(4-*methoxyphenyl*)-1*H*-*indole*-2-*carboxylate* (**10a**): 95% yield (white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.56 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 2.2 Hz, 1H), 7.08 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.3 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 3.91 (s, 3H), 3.90 (s, 3H), 3.74 (s, 3H), 3.66 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.9, 159.4, 159.0, 150.0, 146.2, 133.0, 131.3, 130.9, 128.4, 127.8, 127.4, 126.1, 123.6, 118.4, 114.7, 113.9, 109.1, 61.6, 61.4, 61.1, 55.53, 55.45, 14.5. **HRMS** (ESI) calculated for C₂₇H₂₇NO₆ ([M]⁺): 461.1838; found: 461.1826.

ethyl 4,7-*bis*(4-(*dimethylamino*)*phenyl*)-5,6-*dimethoxy*-1*H*-*indole*-2*carboxylate* (**10b**): 95% yield (yellow solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.71 (s, 1H), 7.54 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.19 (d, J =2.2 Hz, 1H), 6.88 (dd, J = 8.5, 6.3 Hz, 4H), 4.32 (q, J = 7.1 Hz, 2H), 3.75 (s, 3H), 3.68 (s, 3H), 3.05 (s, 6H), 3.04 (s, 6H), 1.34 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.0, 150.1, 150.0, 149.8, 146.1, 133.3, 130.9, 130.4, 127.4, 127.4, 124.1, 123.5, 121.7, 118.3, 112.9, 112.3, 109.5, 61.5, 61.3, 60.9, 40.7, 40.7, 14.5. **HRMS** (ESI) calculated for C₂₉H₃₄N₃O₄ ([M+H]⁺): 488.2544, found: 488.2539.

0

ÒEt

MeO

MeO

ethyl 5,6-*dimethoxy*-4,7-*di*-*p*-*tolyl*-1*H*-*indole*-2-*carboxylate* (**10c**): 84% yield (white solid). ¹**H NMR** (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 2.2 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 3H), 3.67 (s, 3H), 2.47 (s, 3H), 2.46 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161. 9, 149.9, 146.2, 137.8, 137.2, 133.1, 132.9, 131.0, 130.0, 129.9, 129.6, 129.1, 127.9, 127.8, 123.5, 118.8, 109.1, 61.6, 61.4, 61.0, 21.5, 14.5. **HRMS** (ESI) calculated for C₂₇H₂₈NO₄ ([M+H]⁺): 430.2013, found: 430.2010.

ethyl 5,6-dimethoxy-4,7-diphenyl-1H-indole-2-carboxylate (**10d**). 95% yield (white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.66 – 7.40 (m, 10H), 7.09 (d, J = 2.2 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 3.75 (s, 3H), 3.67 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.9, 149.9, 146.2, 136.1, 134.0, 132.8, 130.2, 129.8, 129.2, 128.4, 128.2, 128.1, 128.0, 127.5, 123.6, 119.1, 109.0, 61.7, 61.5, 61.1, 14.5. **HRMS** (ESI) calculated for C₂₅H₂₄NO₄ ([M+H]⁺): 402.1700, found: 402.1699.

ethyl 5,6-*dimethoxy*-4,7-*bis*(4-(*trifluoromethyl*)*phenyl*)-1*H*-*indole*-2*carboxylate* (**10e**). 92% yield (white solid). ¹**H** NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.83 (d, J = 8.1 Hz, 2H), 7.75 (dd, J = 16.8, 7.6 Hz, 7H), 7.05 (d, J = 2.2 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 3.76 (s, 3H), 3.68 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 149.9, 146.3, 139.6, 137.6, 132.3, 130.5 (2C), 130.4 (² $J_{C-F} = 32$ Hz), 130.2 (2C), 129.7 (² $J_{C-F} = 32$ Hz), 128.6, 127.4, 126.2 (³ $J_{C-F} = 4$ Hz), 125.4 (³ $J_{C-F} = 4$ Hz), 124.4 (¹ $J_{C-F} = 272$ Hz), 124.2 (¹ $J_{C-F} = 272$ Hz), 123.5, 118.4, 108.5, 61.8, 61.6, 61.4, 14.5. **HRMS** (ESI) calculated for C₂₇H₂₂NO₄F₆ ([M+H]⁺): 538.1448, found: 538.1444.

ethyl 4,7-*bis*(4-*cyanophenyl*)-5,6-*dimethoxy*-1*H*-*indole*-2-*carboxylate* (**10f**): 76% yield (white solid). ¹**H NMR** (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.82 (d, *J* = 8.1 Hz, 2H), 7.78 – 7.69 (m, 4H), 7.03 (d, *J* = 2.1 Hz, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 3H), 3.66 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.5, 149.8, 146.3, 140.7, 138.7, 133.0, 132.9, 132.3, 132.0, 131.0, 130.6, 128.9, 128.1, 127.3, 123.3, 119.0, 118.7, 118.3, 112.2, 111.5, 108.2, 61.8, 61.6, 61.5, 14.5. **HRMS** (ESI) calculated for C₂₇H₂₂N₃O₄ ([M+H]⁺): 452.1605, found: 452.1598.

ethyl 5,6-*dimethoxy*-4,7-*bis*(4-*nitrophenyl*)-1*H*-*indole*-2-*carboxylate* (**10g**): 90% yield (yellow solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.43 (d, *J* = 8.7 Hz, 2H), 8.39 (d, *J* = 8.7 Hz, 2H), 7.82 (d, *J* = 8.7 Hz, 2H), 7.80 (d, *J* = 8.7 Hz, 2H), 7.05 (d, *J* = 2.1 Hz, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.77 (s, 3H), 3.68 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.5, 149.9, 147.7, 147.4, 146.4, 142.7, 140.6, 132.0, 131.1, 130.8, 129.1, 127.1, 124.6, 123.7, 123.3, 118.2, 108.2, 61.8, 61.6, 61.5, 14.5. **HRMS** (ESI) calculated for C₂₅H₂₂N₃O₈ ([M+H]⁺): 492.1401, found: 492.1394.

ethyl 4,7-*bis*(3,4-*dimethoxyphenyl*)-5,6-*dimethoxy*-1*H*-*indole*-2-*carboxylate* (**10h**): 95% yield (white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.70 (s, 1H), 7.21 – 7.10 (m, 5H), 7.08 – 7.01 (m, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.99 (s, 3H), 3.98 (s, 3H), 3.93 (s, 3H), 3.92 (s, 3H), 3.75 (s, 3H), 3.68 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.8, 149.9, 149.5, 148.9, 148.8, 148.5, 146.1, 132.9, 128.7, 127.8, 127.6, 126.4, 123.6, 122.5, 121.8, 118.5, 113.5, 113.1, 111.8, 111.1, 109.0, 61.6, 61.4, 61.1, 56.3, 56.1, 56.0, 14.51. **HRMS** (ESI) calculated for C₂₉H₃₂NO₈ ([M+H]⁺): 522.2122, found: 522.2122.

ethyl 5,6-*dimethoxy*-4,7-*di*(*thiophen*-3-*yl*)-1*H*-*indole*-2-*carboxylate* (**10i**): 99% yield (off-white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.81 (s, 1H), 7.65 – 7.57 (m, 2H), 7.56 – 7.52 (m, 1H), 7.49 (d, *J* = 4.8 Hz, 1H), 7.46 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.42 (d, *J* = 4.8 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 3.71 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.8, 150.2, 146.4, 135.9, 133.8, 132.8, 129.5, 128.8, 127.9, 126.4, 124.9, 124.5, 124.1, 123.3, 122.9, 114.0, 109.2, 61.5, 61.3, 61.2, 14.5. **HRMS** (ESI) calculated for C₂₁H₂₀NO₄S₂ ([M+H]⁺): 414.0828, found: 414.0827.

ethyl 4,7-*di(furan-3-yl)-5,6-dimethoxy-1H-indole-2-carboxylate* (**10***j*): 81% yield (off-white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.84 (s, 1H), 7.96 – 7.89 (m, 1H), 7.88 – 7.82 (m, 1H), 7.64 (d, J = 1.6 Hz, 1H), 7.58 (d, J = 1.6 Hz, 1H), 7.34 (d, J = 2.1 Hz, 1H), 6.95 – 6.90 (m, 1H), 6.85 – 6.77 (m, 1H), 4.39 (q, J = 7.1 Hz, 2H), 3.84 (s, 3H), 3.78 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.8, 150.3, 146.5, 143.8, 142.9, 141.9, 141.1, 132.7, 127.9, 122.8, 119.9, 119.0, 117.9, 111.8, 111.2, 109.9, 109.2, 61.3, 61.2, 61.0, 14.6. **HRMS** (ESI) calculated for C₂₁H₂₀NO₆ ([M+H]⁺): 382.1285, found: 382.1282.

JН

OEt

ethyl 4,7-*di*(*benzofuran-2-yl*)-5,6-*dimethoxy-1H-indole-2-carboxylate* (**10k**): 91% yield (light green solid). ¹**H NMR** (400 MHz, CDCl₃) δ 10.34 (s, 1H), 8.03 (d, J = 2.4 Hz, 1H), 7.73 – 7.63 (m, 4H), 7.61 (d, J = 1.0 Hz, 1H), 7.57 (d, J = 1.0 Hz, 1H), 7.41 – 7.27 (m, 4H), 4.50 (q, J = 7.2 Hz, 2H), 4.08 (s, 3H), 3.99 (s, 3H), 1.50 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.0, 154.6, 153.7, 151.5, 151.0, 150.0, 147.3, 129.3, 129.0, 127.6, 124.9, 124.2, 123.6, 123.6, 123.5, 122.9, 121.6, 121.2, 112.4, 110.99, 110.97, 108.7, 107.5, 107.1, 105.3, 61.4, 60.3, 56.4, 14.5. **HRMS** (ESI) calculated for C₂₉H₂₄NO₆ ([M+H]⁺): 482.1598, found: 482.1595.

ethyl 5',6'-*dimethoxy*-1*H*,1'*H*,1''*H*-[6,4':7',6''-*terindole*]-2'-*carboxylate* (10I): 78% yield (white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.38 (s, 3H), 8.35 (s, 2H), 7.82 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.68 (s, 1H), 7.63 (s, 1H), 7.43 (dd, J = 8.1, 1.4 Hz, 1H), 7.36 (dd, J = 8.1, 1.4 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.16 (d, J = 2.2 Hz, 1H), 6.70 – 6.60 (m, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 3.66 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.0, 150.0, 146.2, 133.3, 130.0, 128.6, 127.7, 127.6, 127.3, 125.3, 124.9, 123.9, 122.6, 121.7, 121.4, 120.4, 119.6, 112.7, 112.4, 109.5, 102.8, 102.7, 61.7, 61.5, 61.0, 14.5. **HRMS** (ESI) calculated for C₂₉H₂₆N₃O₄ ([M+H]⁺): 480.1918, found: 480.1916.

References

MeO

- 1. H. Deng, Y. Fang, ACS Med. Chem. Lett. 2012, 3, 550-554.
- M. Tani, M. Goto, M. Shimizu, Y. Mochimaru, J. Amemiya, N. Mizuno, R. Sato, Y. Murakami, Synlett 1996, 931-932.
- 3. P. Buchgraber, M. M. Domostoj, B. Scheiper, C. Wirtz, R. Mynott, J. Rust, A. Furstner, *Tetrahedron* 2009, **65**, 6519-6534.

NMR Spectra

High Resolution Mass Spectra

