Supporting Information for

Collateral Hydrogenation over Proton-Conducting Ni/BaZr_{0.85}Y_{0.15}O_{3-δ} Catalysts for Promoting CO₂ Methanation

Sungjun Choi,^{ab} Sung Min Choi,^a Kyung Joong Yoon,^a Ji-Won Son,^a Jong-Ho Lee,^a Byung-Kook Kim,^a Byoung-In Sang^b and Hyoungchul Kim*^a

^aHigh-Temperature Energy Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea. ^bDepartment of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

*Corresponding author (email: hyoungchul@kist.re.kr)

Fig. S1 CO₂ methanation performances of BZY and BZY-supported BaCO₃. All tested powders did not yield CH₄ gas at 400 °C.

Fig. S2 XRD patterns and TEM images of Al₂O₃-containing powders. (a) XRD patterns of the Al₂O₃ support and the Ni/Al₂O₃ catalyst reduced at 600 °C for 2 h. (b) TEM image and EDS analysis result of the reduced Ni/Al₂O₃ catalyst, with Ni and Al elements denoted by red and cyan colors, respectively. Although the Al₂O₃ support exhibited a complex XRD spectrum, peaks of metallic Ni could be discerned at 44.5 and 51.8°. In addition, the reduced Ni catalysts featured an average particle diameter of 8.80 nm (standard deviation = 3.10 nm), while the spherical particles of the Al₂O₃ support had a diameter of ~50 nm.

Fig. S3 Temperature-dependent (a) X_{CO_2} and (b) X_{H_2} values of Ni/BZY and Ni/Al₂O₃. The dashed line represents the thermodynamic equilibrium performance of each conversion under the chosen experimental conditions (H₂/CO₂ = 4.0).

Fig. S4 XRD pattern (a) and TEM-EDS images (b) of Ni/Al₂O₃ subjected to 150 h CO₂ methanation at 400 °C. The average particle diameter of Ni on the Al₂O₃ support equaled ~9.06 nm (standard deviation = 3.50 nm).

Fig. S5 O 1*s* core level XPS spectra of Ni/Al₂O₃ (a) before and (b) after CO₂ methanation. Red, green, and blue lines correspond to lattice oxygen, weakly adsorbed H₂O, and adsorbed carbon-containing species, respectively. The main peak centered at ~531 eV was assigned to the lattice oxygen of Al₂O₃.