Experimental and Theoretical Interpretation on the Magnetic Behavior for Two Dy (III) Single-Ion Magnets Constructed Through β -Diketonate Ligands with Different Substituent Groups (-Cl/-OCH₃)

Sheng Zhang,^{a,c*} Wenjiao Mo,^a Jiangwei Zhang,^d Haipeng Wu,^b Min Li,^b Xingqiang Lü,^c Bing Yin,^{b*} Desuo Yang ^{a*}

^{a.} College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.

- ^{b.} Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China.
- ^{c.} School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Medical Material, Northwest University, Xi'an 710069, Shaanxi, China
- ^{d.} State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS)

Compound	Cl-1	CH ₃ O-2
Empirical formula	C42H23Cl3DyF9N2O6	C45H32DyF9N2O9
CCDC	1815606	1815605
<i>T</i> (K)	293 (2)	130 (2)
Formula weight	1091.47	1078.23
Crystal system	Triclinic	Triclinic
Space group	<i>p-1</i>	<i>p-1</i>
$a/ m \AA$	11.5704(11)	10.7420(16)
$b/{ m \AA}$	12.1367(11)	12.7566(17)
$c/{ m \AA}$	15.4949(13)	16.960(2)
$lpha/^{ m o}$	98.652(7)	85.703(11)
eta/°	100.231(8)	80.218(12)
$\gamma/^{o}$	102.305(8)	66.118(13)
$V/\text{\AA}^3$	2051.6(3)	2094.1(5)
Ζ	2	2
$ ho_{ m calc.}/ m g\cdot m cm^{-3}$	1.767	1.710
μ/mm^{-1}	12.367	10.442
F(000)	1070	1070
$\theta \min$ -max/o	4.335 to 59.999	3.922 to 68.524
Total reflections	11224	14387

Table S1 Crystal data and structure refinement details for Cl-1 and CH₃O-2.

Unique reflections	6059	7479					
Goodness-of-fit on F^2	1.008	1.027					
$R_1/wR_2 [I \ge 2\sigma(I)]$	0.0639 / 0.0855	0.0635/ 0.1479					
R_1/wR_2 [all data]	0.1255 / 0.1123	0.0961 / 0.1863					
Largest peak and hole/ e Å-	0.970 / -0.765	0.564 / -0.727					
* $R_1 = \Sigma F_0 - F_c / \Sigma F_0 $, $wR_2 = [\Sigma (F_0^2 - F_c^2) / \Sigma w (F_0)^2]^{1/2}$, $w = [\sigma_c^2 (F_0^2) + (xP)^2 + yP]^{-1}$, $P = (F_0^2 + 2F_c^2) / 3$							

Table S2 Selected bond lengths (Å) and angles (°) for Cl-1 and CH₃O-2.

Cl-1			
Dy(1)-O(2)	2.319(7)	O(2)-Dy(1)-O(1)	72.6(2)
Dy(1)-O(6)	2.321(6)	O(6)-Dy(1)-O(1)	138.2(2)
Dy(1)-O(5)	2.330(6)	O(5)-Dy(1)-O(1)	77.2(2)
Dy(1)-O(3)	2.339(6)	O(3)-Dy(1)-O(1)	72.9(2)
Dy(1)-O(4)	2.352(6)	O(4)-Dy(1)-O(1)	139.1(2)
Dy(1)-O(1)	2.369(6)	O(2)-Dy(1)-N(1)	105.5(2)
Dy(1)-N(1)	2.544(8)	O(6)-Dy(1)-N(1)	138.8(3)
Dy(1)-N(2)	2.586(8)	O(5)-Dy(1)-N(1)	147.3(2)
O(2)-Dy(1)-O(6)	75.8(2)	O(3)-Dy(1)-N(1)	77.4(3)
O(2)-Dy(1)-O(5)	85.1(2)	O(4)-Dy(1)-N(1)	77.3(3)
O(6)-Dy(1)-O(5)	73.4(2)	O(1)-Dy(1)-N(1)	76.8(2)
O(2)-Dy(1)-O(3)	143.6(2)	O(2)-Dy(1)-N(2)	77.3(2)
O(6)-Dy(1)-O(3)	126.1(2)	O(6)-Dy(1)-N(2)	76.8(2)
O(5)-Dy(1)-O(3)	76.3(2)	O(5)-Dy(1)-N(2)	148.3(2)
O(2)-Dy(1)-O(4)	145.5(2)	O(3)-Dy(1)-N(2)	131.8(3)
O(6)-Dy(1)-O(4)	80.2(2)	O(4)-Dy(1)-N(2)	73.4(2)
O(5)-Dy(1)-O(4)	111.4(2)	O(1)-Dy(1)-N(2)	120.8(2)
O(3)-Dy(1)-O(4)	70.9(2)	N(1)-Dy(1)-N(2)	63.9(3)

СН ₃ О-2			
Dy(1)-O(1)	2.305(7)	O(1)-Dy(1)-N(1)	78.9(2)
Dy(1)-O(5)	2.307(5)	O(5)-Dy(1)-N(1)	150.0(2)
Dy(1)-O(8)	2.312(6)	O(8)-Dy(1)-N(1)	130.0(2)
Dy(1)-O(2)	2.318(5)	O(2)-Dy(1)-N(1)	121.0(2)
Dy(1)-O(7)	2.337(6)	O(7)-Dy(1)-N(1)	80.8(2)
Dy(1)-O(4)	2.350(5)	O(4)-Dy(1)-N(1)	78.28(19)
Dy(1)-N(1)	2.554(6)	O(1)-Dy(1)-N(2)	103.3(2)
Dy(1)-N(2)	2.571(6)	O(5)-Dy(1)-N(2)	146.0(2)
O(1)-Dy(1)-O(5)	88.0(2)	O(8)-Dy(1)-N(2)	75.4(2)
O(1)-Dy(1)-O(8)	140.71(19)	O(2)-Dy(1)-N(2)	75.06(19)
O(5)-Dy(1)-O(8)	75.76(19)	O(7)-Dy(1)-N(2)	90.3(2)
O(1)-Dy(1)-O(2)	71.2(2)	O(4)-Dy(1)-N(2)	141.19(18)

O(5)-Dy(1)-O(2)	78.70(19)	N(1)-Dy(1)-N(2)	63.9(2)
O(8)-Dy(1)-O(2)	70.6(2)	O(1)-Dy(1)-N(1)	78.9(2)
O(1)-Dy(1)-O(7)	147.2(2)	O(5)-Dy(1)-N(1)	150.0(2)
O(5)-Dy(1)-O(7)	97.1(2)	O(8)-Dy(1)-N(1)	130.0(2)
O(8)-Dy(1)-O(7)	71.31(19)	O(2)-Dy(1)-N(1)	121.0(2)
O(2)-Dy(1)-O(7)	141.6(2)	O(7)-Dy(1)-N(1)	80.8(2)
O(1)-Dy(1)-O(4)	76.2(2)	O(4)-Dy(1)-N(1)	78.28(19)
O(5)-Dy(1)-O(4)	72.39(18)	O(1)-Dy(1)-N(2)	103.3(2)
O(8)-Dy(1)-O(4)	129.3(2)	O(5)-Dy(1)-N(2)	146.0(2)
O(2)-Dy(1)-O(4)	136.71(19)	O(8)-Dy(1)-N(2)	75.4(2)
O(7)-Dy(1)-O(4)	74.7(2)	O(2)-Dy(1)-N(2)	75.06(19)
O(8)-Dy(1)-N(1)	130.0(2)	O(7)-Dy(1)-N(2)	90.3(2)
O(2)-Dy(1)-N(1)	121.0(2)	O(4)-Dy(1)-N(2)	141.19(18)
O(7)-Dy(1)-N(1)	80.8(2)	N(1)-Dy(1)-N(2)	63.9(2)
O(4)-Dy(1)-N(1)	78.28(19)	O(1)-Dy(1)-N(1)	78.9(2)
O(1)-Dy(1)-N(2)	103.3(2)	O(5)-Dy(1)-N(1)	150.0(2)

Table S3 Dy^{III} ion geometry analysis by SHAPE 2.1 software.

	ABOXIY,	ABOXIY,	ABOXIY,	ABOXIY, CH ₃ -4	ABOXIY,
Configuration	Cl-1	СН ₃ О-2	CH3-3	(solvent)	F-5
Hexagonal bipyramid (D_{6h})	15.904	15.904	15.235	16.278	15.550
Cube (O _h)	10.507	9.035	8.971	9.645	10.541
Square antiprism (D_{4d})	0.791	1.888	1.520	0.484	1.344
Triangular dodecahedron (D_{2d})	1.341	0.621	0.792	2.106	1.509
Johnson gyrobifastigium J26 (D _{2d})	14.375	14.958	14.859	15.939	14.497
Johnson elongated triangular bipyramid J14 (D_{3h})	27.695	29.352	29.178	27.903	28.104
Biaugmented trigonal prism J50 (C_{2v})	2.296	2.743	2.404	2.376	1.785
Biaugmented trigonal prism (C_{2v})	1.935	1.957	1.792	1.737	1.314
Snub siphenoid J84 (D _{2d})	3.732	3.565	3.429	4.992	4.070

Cl-1

HBPY-8	3 D6h	Hexagonal bip	yramid					
CU-8	4 Oh	Cube						
SAPR-8	5 D4d	Square antipri	sm					
TDD-8	6 D2d	Triangular doo	lecahedron					
JGBF-8	7 D2d	Johnson gyrob	ifastigium J26					
JETBPY-8	8 D3h	Johnson elong	ated triangular	· bipyramid J14				
JBTPR-8	9 C2v	Biaugmented t	rigonal prism J	150				
BTPR-8	10 C2v	Biaugmented t	rigonal prism					
JSD-8	11 D2d	Snub diphenoid	J84					
Structure [M	1L8]	HBPY-8	CU-8	SAPR-8		TDD-8	JGBF-8	JETBPY-8
JBTPR-8	BTPR-8	JSD-8						
ABOXIY	,	16.745,	10.507,	0.791,	1.341,	14.375,	27.695,	2.296,
1.935,	3.732							

CH₃O-2

HBPY-8	3 D6h	Hexagonal bip	yramid					
CU-8	4 Oh	Cube						
SAPR-8	5 D4d	Square antipris	m					
TDD-8	6 D2d	Triangular dod	ecahedron					
JGBF-8	7 D2d	Johnson gyrobi	fastigium J26					
JETBPY-8	8 D3h	Johnson elong	ated triangular	bipyramid J14				
JBTPR-8	9 C2v	Biaugmented to	rigonal prism J	50				
BTPR-8	10 C2v	Biaugmented to	rigonal prism					
JSD-8	11 D2d	Snub diphenoid	J84					
Structure [N	1L8]	HBPY-8	CU-8	SAPR-8	-	TDD-8	JGBF-8	JETBPY-8
JBTPR-8	BTPR-8	JSD-8						
ABOXIY	,	15.904,	9.035,	1.888,	0.621,	14.958,	29.352,	2.743,
1.957,	3.565							

CH₃-3

HBPY-8	3 D6h	Hexagonal	bipyramid							
CU-8	4 Oh	Cube								
SAPR-8	5 D4d	Square ant	iprism							
TDD-8	6 D2d	Triangular	dodecahedro	n						
JGBF-8	7 D2d	Johnson qy	robifastiqiu	m J26						
JETBPY-8	8 D3h	Johnson el	Johnson elongated triangular bipyramid J14							
JBTPR-8	9 C2v	Biaugmente	Biaugmented trigonal prism J50							
BTPR-8	10 C2v	Biaugmente	d trigonal p	rism						
JSD-8	11 D2d	Snub diphe	noid J84							
AC253 - 1455										
Structure [ML8]	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8
ABOXIY	,	15.235,	8.971,	1.520,	0.792,	14.859,	29.178,	2.404,	1.792,	3.429
22.41264-0452225294										

CH₃-4 (solvent)

HBPY-8	3 D6h	Hexagonal	bipyramid							
CU-8	4 Oh	Cube								
SAPR-8	5 D4d	Square and	tiprism							
TDD-8	6 D2d	Triangula	r dodecahedro	n						
JGBF-8	7 D2d	Johnson g	uhnson qyrobifastiqium J26							
JETBPY-8	8 D3h	Johnson e	Johnson elongated triangular bipyramid J14							
JBTPR-8	9 C2v	Biaugment	Biauqmented trigonal prism J50							
BTPR-8	10 C2v	Biaugment	ed trigonal p	rism						
JSD-8	11 D2d	Snub diph	enoid J84							
10000000000000										
Structure [ML8]	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8
ABOXIY	,	16.278,	9.645,	0.484	2.106,	15.939,	27.903,	2.376,	1.737,	4.992
					A CONTRACTOR OF A CONTRACTOR O					

F-5

HBPY-8	3 D6h	Hexagonal	bipyramid							
00-8	4 Uh	Cube								
SAPR-8	5 D4d	Square an	ntiprism							
TDD-8	6 D2d	Triangula	ar dodecahedro	n						
JGBF-8	7 D2d	Johnson (nson gyrobifastigium J26							
JETBPY-8	8 D3h	Johnson e	ohnson elongated triangular bipyramid I14							
JBTPR-8	9 C2v	Biaugment	ed trigonal p	rism J50						
BTPR-8	10 C2v	Biaugment	ed trigonal p	rism						
JSD-8	11 D2d	Snub diph	nenoid J84							
Structure	Г и та 1	HBPY-8	CII-8	SAPR-8	TDD-8	IGBE-8	TETBPY-8	IBTPR-8	BTPR-8	
ABOXIY	,	15.550,	10.541,	1. 344,	1.509,	14. 497,	28. 104,	1. 785,	1. 314,	

JSD-8 4.070

Fig. S1 XRPD curves of Cl-1 (a) and CH₃O-2 (b). Table S4 Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data of Cl-

	1.										
$\Delta \chi_1$ (cm ³ mol ⁻¹)	$\Delta \chi_2$ (cm ³ mol ⁻¹)	$ au_0(s)$	α_1	Residual							
0.260267	2.88972	0.00108023	0.152772	0.0544879							
0.235467	2.63226	0.00108632	0.154364	0.0448944							
0.215929	2.41606	0.00109073	0.154924	0.0387642							
0.198845	2.23348	0.00109272	0.155788	0.0334581							
0.185081	2.11559	0.00109064	0.159417	0.0315545							
0.161256	1.82153	0.00109452	0.158183	0.0230387							
0.151712	1.71551	0.00109334	0.158845	0.0203543							
0.143558	1.62042	0.00109116	0.159116	0.018353							
0.135971	1.53591	0.00108856	0.159742	0.016524							
0.129317	1.45934	0.00108448	0.159882	0.0150249							
0.117977	1.32793	0.00107534	0.160704	0.0121908							
0.109049	1.2178	0.00106267	0.160384	0.0103158							
0.101474	1.12452	0.00104546	0.159654	0.0087332							
0.0952804	1.04441	0.00102376	0.157997	0.00738076							
0.0904192	0.974851	0.000996952	0.154781	0.0063388							
0.0855923	0.899736	0.000954786	0.148749	0.00537565							
0.0816003	0.83514	0.000901332	0.140304	0.00446558							
0.0781279	0.779001	0.000837319	0.129569	0.00360929							
0.0749899	0.729782	0.000764925	0.117124	0.00286337							
0.0722477	0.686123	0.000687403	0.103531	0.00223526							
0.0693756	0.647638	0.000608463	0.0905437	0.00161829							
0.0642372	0.58199	0.000460389	0.0662283	0.000804666							
0.0600902	0.528562	0.000338316	0.0462514	0.000370617							
0.0568107	0.484583	0.000244763	0.03203	0.000155266							
0.0502608	0.415816	0.000119337	0.0144383	3.37361E-05							
0.0347966	0.388734	7.53425E-05	0.0125559	1.89366E-05							
2.23268E-09	0.365537	4.27867E-05	0.0111428	1.64302E-05							

-				
$\Delta \chi_1$ (cm ³ mol ⁻¹)	$\Delta \chi_2$ (cm ³ mol ⁻¹)	$ au_0(\mathrm{s})$	α_1	Residual
0.266507	3.56355	0.001515	0.176318	0.110833
0.168186	2.34622	0.001424	0.17889	0.052804
0.119823	1.74644	0.001363	0.1812	0.031467
0.091869	1.3902	0.001296	0.180892	0.020606
0.075094	1.1541	0.0012	0.175946	0.014766
0.064386	0.985479	0.001067	0.166665	0.011127
0.055593	0.859953	0.000912	0.154186	0.008216
0.048402	0.762001	0.000753	0.137986	0.006132
0.042738	0.683631	0.000603	0.120175	0.004326
0.037046	0.61968	0.00047	0.101782	0.002898
0.031611	0.56649	0.00036	0.083411	0.001791
0.022852	0.522052	0.000272	0.068876	0.000984
0.012178	0.484203	0.000204	0.054569	0.000493
4.46E-14	0.451358	0.000152	0.039521	0.000264
1.22E-13	0.423316	0.000118	0.013788	0.000167

Table S5 Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data ofCH₃O-2.