Supplementary information

Enhanced production of optical (S)-acetoin by recombinant Escherichia coli whole-cell biocatalyst with NADH regeneration

Jian-Xiu Li ^{1,2}, Yan-Yan Huang ², Xian-Rui Chen ², Qi-Shi Du ², Jian-Zong Meng ¹, Neng-Zhong Xie ^{1,2, *} and Ri-Bo Huang ^{1,2, *}

¹ State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Life Science and Biotechnology College, Guangxi University, 100 Daxue Road, Nanning, 530004, China

² State Key Laboratory of No-Food Biomass and Enzyme Technology, National Engineering Research Center for No-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.

* Corresponding author.

E-mail addresses: xienengzhong@gxas.cn (N.Z. Xie), guruace@163.com (R.B. Huang).

Table S1. Sequences of codon-optimized genes

> fdh

> gdh

> Ppdar

2

acggcgtgaaagtggttagcgcggttgcggacattagcgatcgtagccaggcggcggcggcggtggcgagcctggagc acgaactgggcgcggttgacatcctgattaacaacgcgggtatcgcgaccttcggcaccgtggcggagatggatccgga ggaatgggaacgtatcattcgtgttaacctgatgggcacctactatgtgacccacgcggttctgccgagcatgctggcgca gaaaagcggcaacatcattaacattagcagcaccgcgggtgaacgtggttggcgaccggtagcgcgtattgcgcgagca agttcgcgctgatgggctttaccgaggcgctgatgcaagaagtgcgtaaaagcaacatccgtgttaccgcgctgaccccg agcaccgttaacaccgagctggcggaacgcgggtctgccgattggcgacgagatcgtatgctgcagccgaagac ctggcggatctgaccctggcgaccctgaagctgccgccgcgtgtgcagctgaagtgcgtatctggaccaccaaccc gcaataa

> Kpdar

> ardII

3

> adh

> adr

4

Reaction	Substrate	Relative activity (%)
Reductive reaction ^a	Diacetyl	100 ± 9.07
	(R)/(S)-Acetoin	33.3 ± 4.02
	Ethyl pyruvate	14.9 ± 1.30
	Acetophenone	0.4 ± 0.02
Oxidative reaction ^b	meso-2,3-Butanediol	100 ± 5.6
	(2 <i>S</i> ,3 <i>S</i>)-2,3-Butanediol	0.6 ± 0.06
	(2 <i>R</i> ,3 <i>R</i>)-2,3-Butanediol	0.3 ± 0.01
	(R)/(S)-Acetoin	0.7 ± 0.07
	Phenethyl alcohol	0.7 ± 0.02
	Ethyl acetate	0.7 ± 0.03

Table S2. Substrate specificities of KpDAR

^a Enzyme activities in ketone reduction were measured with 5 mM substrate and 0.2 mM NADH in 100 mM phosphate buffer, and the relative activity of 100% represents 2887.6 U/mg for diacetyl reduction. ^b Alcohol oxidation reactions were measured with 5 mM substrate and 0.2 mM NAD⁺ in 100 mM phosphate buffer, and the relative activity of 100% represents 108.8 U/mg for *meso*-2,3-butanediol oxidation. All reactions were carried out at 45°C and pH 6.0. Data are the averages standard deviations (n=3).

Fig. S1 SDS-PAGE analyses the expression of various DARs. Lane M, marker proteins; lane 1, *E. coli* BL21 (DE3) /pETDuet-1; lane 2, *E. coli* BL21/ pETDuet-*fdh*; lane 3, *E. coli* BL21/ pETDuet-*adr-fdh*; lane 4, *E. coli* BL21/ pETDuet-*adh-fdh*; lane 5, *E. coli* BL21/ pETDuet-Pp*dar-fdh*; lane 6, *E. coli* BL21/ pETDuet-*ard*II-*fdh*; lane 7, *E. coli* BL21/ pETDuet-Kp*dar-fdh*. a: FDH; b-f: DAR encode by *adr*, *adh*, Pp*dar*, *ard*II and Kp*dar*, respectively.

Fig. S2 SDS-PAGE analysis of purified KpDAR. Lane M, maker; lane 1, crude extract of *E. coli* BL21 (DE3)/pET-28a(+); lane 2, crude extract of E. coli BL21/pET 28a(+)-Kp*dar*; lane 3, purified KpDAR.

Fig. S3 Effect temperature and pH on the activities of KpDAR. (a) Reductive reaction towards diacetyl; (b) Reductive reaction towards (R)/(S)-acetoin. The optimal temperature for diacetyl and (R)/(S)-acetoin were 45°C and 50°C, respectively. Maximum activities were observed at pH 6.0 and pH 7.0 respectively.