Supporting Information

Controlling the electrical conductive network formation in nanorod

filled polymer nanocomposites by tuning nanorod stiffness

Yangyang Gao^{1,2,3}, RuibinMa^{1,2,3}, Huan Zhang⁴, Jun Liu¹, Xiuying Zhao^{1,2,3*}, Liqun Zhang^{1,2,3*}
¹Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China
²State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 10029, People's Republic of China
³Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, 10029, People's Republic of China
⁴Aerospace Research Institute of Materials and Processing Technology, Beijing, 100076, People's Republic of China

^{*} Corresponding author: zhanglq@mail.buct.edu.cn or zhanglq@mail.buct.edu or <a href="mailto:zhanglq@m

The aggregation structure and the rotational diffusion of nanorod

Here, the number of the nanorods (NRs) for each system is 4500 (φ =4.40%). First, we calculated the end-to-end distance of NR $|\mathbf{R}_{ee}| = |\mathbf{r}_1 - \mathbf{r}_n|$, where \mathbf{r}_1 and \mathbf{r}_n are the position vector of the first and the last beads of NR in Fig. S1. $|\mathbf{R}_{ee}|$ gradually increases from 4.63 for K_{stiffness}=0 to 8.29 for K_{stiffness}=100. Thus, the force constant K_{stiffness} in Eq. (3) can be used to tune the NR stiffness, which is reflected by the increase of $|\mathbf{R}_{ee}|$.

Then we calculated the inter-nanorod radial distribution function (RDF) to characterize the NR dispersion state for systems with different NR stiffness (K_{stiffness}) in Fig. S2(a). The peak at $r = 1\sigma$ reflects the direct contact structure of NRs. And the peak at $r = 2\sigma$ reflects the NR aggregates sandwiched by one polymer layer. It is found that both the peaks at $r = 1\sigma$ and $r = 2\sigma$ decrease with increasing K_{stiffness}, which indicates a little aggregation of NRs. However, the dispersion of NRs is relatively uniform in the matrix because the height of the peaks is low (<1.0). To observe the NR dispersion state, the snapshots of NRs with different stiffness (φ =4.40%) are shown in Fig. S2(b). It clearly presents that the NRs gradually straighten with K_{stiffness} and disperse uniformly in the matrix.

At last, we investigated the effect of NR stiffness ($K_{stiffness}$) on the rotational diffusion of NR.¹ The rotational diffusion of NR is defined as the time correlation function of the end-to-end vector of NR $\phi_{rot}(t) = \langle \mathbf{u}(t) \cdot \mathbf{u}(0) \rangle$, where $\mathbf{u}(t)$ denotes the end-to-end unit vector of NR at time t. As shown in Fig. S3, the rotational diffusion $\phi_{rot}(t)$ of NRs gradually decreases from 1.0 to 0 with the simulation time, which indicates that it gradually forgets its original position. This means that NRs

experience enough relaxation within the simulation time. Following the work², we have calculated the rotational diffusion coefficient (D_r), which gradually decreases from $15.5*10^{-4}\tau^{-1}$, $12.2*10^{-4}\tau^{-1}$, $9.7*10^{-4}\tau^{-1}$, $7.35*10^{-4}\tau^{-1}$, $5.35*10^{-4}\tau^{-1}$ to $2.43*10^{-4}\tau^{-1}$ with the increase of K_{stiffness} from 0, 1, 2, 5, 10 to 100, respectively.

Fig. S1 The end-to-end distance $|\mathbf{\hat{R}}_{ee}|$ of the nanorod with different stiffness (K_{stiffness}). ($T^* = 1.0$)

Fig. S2 (a) The RDF and (b) snapshots of the nanorod with different stiffness ($K_{stiffness}$) where the polymer chains are neglected for clarity. The red spheres denote the nanorods. ($T^*=1.0$, $\varphi=4.40\%$)

Fig. S3 The $\phi_{rot}(t)$ of the nanorod with different stiffness (K_{stiffness}). ((T^* =1.0, φ =4.40%)

Fig. S4(a) The RDF and (b) the main cluster size C_n as a function of the nanorod volume fraction φ for different shear rates β . ($T^* = 1.0$, K_{stiffness}=2)

Fig. S5 Some typical snapshots for systems at three shear rates β . The red spheres denote the nanorods within the main cluster. The blue spheres are the other nanorods. X direction is the shear direction. ($T^* = 1.0, \varphi = 4.40\%$, K_{stiffness}=2)

Fig. S6 The nanorod orientation $\langle P_2 \rangle$ with respect to the nanorod stiffness (K_{stiffness}). ($T^* = 1.0$, $\varphi = 4.40\%$, $\beta = 0.1$)

Fig. S7 Change of the main cluster size C_n as a function of the nanorod volume fraction φ for different nanorod stiffness (K_{stiffness}). ($T^* = 1.0$, $\beta = 0.1$)

Fig. S8(a) Some typical snapshots for systems for different nanorod stiffness (K_{stiffness}) at two shear rates $\beta = 0.0$ and 0.1 ($\varphi = 4.40\%$). The red spheres denote the nanorods within the main cluster. The blue spheres are the other nanorods. X direction is the shear direction. (b) The linear relationship between the logarithm of anisotropy of conductive probability $\Lambda_{\parallel} / \Lambda_{\perp}$ and the orientation of nanorod $\langle P_2 \rangle$ at $\varphi = 3.95\%$. ($T^* = 1.0$)

References

- 1. M. J. Kim, H. W. Cho, J. Kim, H. Kim and B. J. Sung, *Physical Review E*, 2015, 92, 042601.
- 2. T. Zhao and X. Wang, Polymer, 2013, 54, 5241-5249.