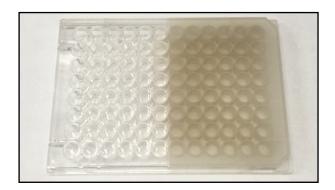
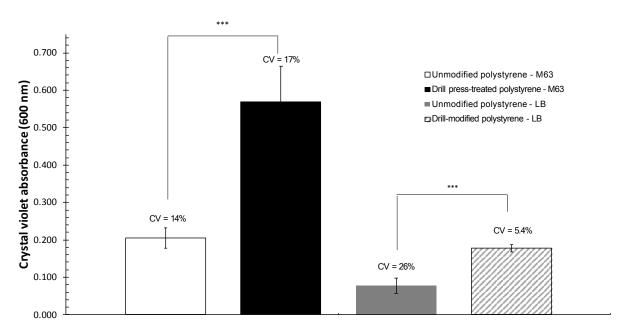
Supplementary material

Abrasive Treatment of Microtiter Plates Improves the Reproducibility of Bacterial Biofilm

Assays


Emily Bordeleau⁺, Sina Atrin Mazinani⁺, David Nguyen, Frank Betancourt and Hongbin Yan*

Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock


Way, St. Catharines, Ontario, Canada L2S 3A1

+Equal contribution

*Corresponding author. Email: tyan@brocku.ca

Figure S1. Photograph of a Corning (Product No. 351172) microtiter plate after half of the plate has undergone sand-blast treatment (50/50).

Comparison of biofilm formation in a "50/50" unmodified and drill press-treated polystyrene plate

Figure S2. *P. fluorescens* Pf0-1 biofilm formed on unmodified and drill-modified polystyrene plate, in M63 or LB media. The bars represent the average amount of biofilm formed as quantified by crystal violet staining. Error bars represent the mean \pm standard deviation (n=6). CV: coefficients of variation. ***: P<0.001

(b)

Figure S2. Drill bit used to modify microtiter plate wells. (a). side view; (b). view of the tip.

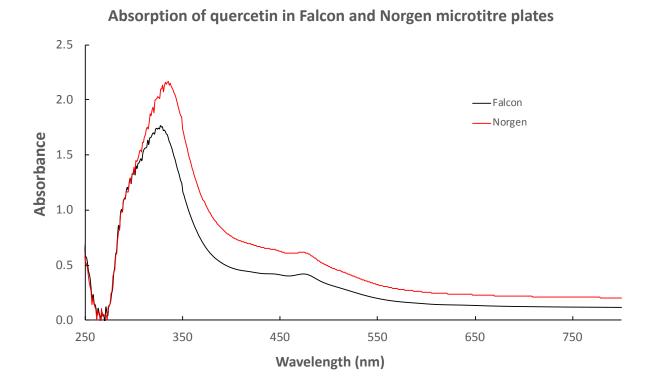


Figure S3. Absorption of quercetin in Falcon and Norgen microtitre plates.