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Figure S1. (a) N2 adsorption-desorption isotherm curve and (b) BJH pore size distribution of 

NMCs. The isotherm of the NMCs exhibit type IV behaviour following the IUPAC 

classification, indicating that the NMCs are typically mesoporous carbon materials. The BET 

surface area and total pore volume are 731 m2 g-1 and 2.6 cm3 g-1, respectively. 
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Figure S2. TEM image of NMCs. The NMCs sample consists of developed and spherical 

mesopores.
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Figure S3. (a) XPS survey spectra and (b) high-resolution N1s XPS spectra of NMCs. The 

XPS survey spectra of the NMCs possess three peaks centered at 284.6, 400.0, and 513.4 eV, 

corresponding to C1s, N1s, and O1s, respectively, thus excluding the presence of any other 

impurities. The N1s XPS spectra were curve-fitted into three peaks with binding energies of 

398.5, 400.5 and 401.6 eV corresponding to pyridinic N, pyrrolic N, and graphitic N, 

respectively.
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Figure S4. STEM elemental mapping images of Ag2Se@Se/NMC. From the multi-elemental 

overlay images of C, Se, Ag, it can be clearly seen that the area of C is a little smaller than 

those of Se and Ag. The gap between the areas of C and Ag clearly indicates the position of 

Ag2Se coating on the surfaces of Se/NMC composites.
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Figure S5. Photograph of sealed vials of the 0.01 mol/L Li2Se6 in DOL/DME (1:1, v/v) 

solution (a), the Li2Se6/DOL/DME solution after contact with NMCs (b) and Ag2Se@NMC (c) 

after 20 h. The Ag2Se@NMC samples were obtained by thermal evaporation of Se from 

Ag2Se@Se/NMC. It can be clearly observed that the color of the Li2Se6 solution changes 

from dark brown to light brown and transparent color, respectively after absorption by NMCs 

and Ag2Se@NMC for 20 h. The significant decoloration of Li2Se6 solution after the 

adsorption of Ag2Se@NMC confirms the enhanced adsorption capability toward 

polyselenides of NMCs after Ag2Se coating.
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Figure S6. EIS of Ag2Se@Se/NMC and Se/NMC before the first cycle and after the 50th 

cycle. Rct is quantified by the x-axis intersect of the semicircle in the high-frequency domain, 

while Wo is represented by the straight line in the low-frequency region. Upon cycling, the 

increase of the interfacial charge transfer resistance Rct could be attributed to the 

decomposition of electrolyte on the electrode surface and the volume variation. More 

importantly, Rct of Ag2Se@Se/NMC is lower than that of Se/NMC both before 1st and after 

50th cycle, indicating that the interfacial charge transfer of Ag2Se@Se/NMC is much faster 

than that of Se/NMC.
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Table S1. Powder electrical conductivity of the NMCs, Se/NMC and Ag2Se@Se/NMC.

Samples NMCs Se/NMC Ag2Se@Se/NMC

Powder electrical 
conductivity / S cm-1 0.26 0.21 0.34

Table S2. Comparison of our results with the previously reported works on the Se-based 

composites.

Composite Electrolyte
Se 

loading
/ wt.%

Current rate Initial cylce 
Discharge capacity / mAh g-1  
(Coulombi cefficiency / %)

Reversible capacity
mAh g-1

0.5 C 560  (79.0) 246  (80 cycles)Se/BPC1 45.1 1 C 552  (84.4) 264  (80 cycles)
Se/MCN-RGO2 62 0.1 C 655  (96.5) 568  (100 cycles)
Se/PPy HS3 52.4 0.2 C 630  (94.7) 400  (80 cycles)

0.2 C 780  (80.2) 425  (100 cycles)
308  (460 cycles)

Se/CMCs4 49.7
0.5 C 688  (/)

253  (100 cycles)
239  (200 cycles)
232  (400 cycles)
231  (460 cycles)

0.5 C 636  (81.3) 330  (30 cycles)Se-NCHPC5 56.2 1 C 535  (90.9) 277  (50 cycles)
Se/PHCS6 60 0.1 C 590  (92.6) 338  (50 cycles)
HCPS/Se7 41.2 0.5 C 572  (83.9) 299  (100 cycles)
Se-CP8 60 1 C 1504  (99) 413  (50 cycles)

0.5 C 641  (58.0) 301  (100 cycles)meso-C@Se9 48 1 C 661  (/) 320  (100 cycles)
Se@C10 68 0.1 C 660  (99) 300  (100 cycles)

Se@RGO11 80 0.2 C 533  (98) 352  (100 cycles)
308  (200 cycles)

HPCA/Se12 56 0.5 C 587  (46.5) 367  (50 cycles)
Se/C13 43.2 0.5 C 558  (69.3) 181  (80 cycles)
MWCNT/Se-S14 56.2 0.5 C 646  (79.2) 356  (80 cycles)

3DG-CNT@Se15

DOL/DME

51 0.2 C 633  (93.4) 531  (100 cycles)
504  (150 cycles)
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TiO2-Se16 70.8 0.1 C 481  (53.0) 158  (50 cycles)
MCM-3.8-Se17 49.5 0.5 C 513  (92.4) 300  (100 cycles)

C-Co-N/Se18 76.5 0.1 C 672  (97.1) 588  (100 cycles)
574  (200 cycles)

0.2 C 652  (97.7) 382  (100 cycles)

0.5 C 594  (96.9)
358  (100 cycles)
298  (200 cycles)
206  (400 cycles)

Ag2Se@
Se/NMC 
(Our work)

67 

1 C 541  (97.1)
301  (100 cycles)
243  (200 cycles)
193  (400 cycles)

Se/CMK-319 49 0.1 C 920 (57.8) 600  (50 cycles)

Se/Meso-CS20 30 0.25 C 480 (34.9)
476  (100 cycles)
462  (200 cycles)
489  (500 cycles)

Se@N-MPC21 50 0.5 C 480 (34.9)
476  (100 cycles)
462  (200 cycles)
489  (500 cycles)

Se-MC22 51 0.1 C 920 (57.8) 600  (50 cycles)

Se/CNF23 52.3 0.07 C 1022 (61.3) 568  (100 cycles)
570  (200 cycles)

Se/PTCDA-C24 54 0.15 C 897 (56.9) 317  (100 cycles)
Se/MPCS25 60 0.1 C 663 (57) 643  (100 cycles)

Se/PCS26 60 0.5 C 560 (64.5) 456  (100 cycles)
433  (200 cycles)

Se/Micro-C27 60 1 C 926 (72.9) 540  (100 cycles)

Se/Micro-CS28

EC/DEC

70.5 1 C 857.8 (56.5) 463  (100 cycles)
348  (200 cycles)

The comparison between our results and the previously reported works demonstrate that the 

electrochemical performance of the Ag2Se@Se/NMC is among the best series of Se-based 

cathode materials when the key performance indicators including the reversible capacity, the 

initial coulombic efficiency, the Se loading and the used electrolyte are all considered. 
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