Facile synthesis of all-in-one graphene nanosheets@nickel electrode for high-

power performance supercapacitor application

Bing Huang^{a,*}, Zhiyuan Zhao^{a,*}, Jian Chen^a, Yuzhen Sun^a, Xiaowei Yang^a, Jian

Wang^{a,b}, Hao Shen^b, Ye Jin^b

^a Institute of New Energy on Chemical Storage and Power Sources, College of

Applied Chemistry and Environmental Engineering, Yancheng Teachers University,

Yancheng, 224000, China

^b College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing,

210009, China

Figure S1. SEM images of electrochemical exfoliated GNSs@Ni electrode

$$C_m(F g^{-1}) = \frac{tIm}{\Delta V}$$

where t (h) is the discharge time, m (kg) is the mass of the active materials in the electrodes, ΔV (V) is the range of potential, I (A) is the discharge current.

Figure S2, The typical mass capacitance (C_m) based on the Galvanostatic Charge-Discharge (GCD) curves were recorded at different current density, C_m of the electrode can be calculated through the following Eqs.(1).