Electronic Supporting Information

Vibrational properties of isotopically enriched materials: the case of calcite

Ben Xu, Anna Hirsch, Leeor Kronik, and Kristin M. Poduska

Calculated Structural Parameters of Calcite

Table S1 Experimental and computationally optimized parameters of the calcite hexagonal unit cell. Distances are in Å and volume in Å³. Experimental data are from Maslen, E. N.; Streltsov, V. A.; Streltsova, N. R. *Acta Crystallogr., Sect. B: Struct. Sci.* **1993**, 49, 636-641

	Exp.	calculated	% error
a	4.99	5.05	1.2
С	17.06	17.23	1.0
V	386.1	380.9	1.3
d_{C-O}	1.28	1.30	1.6
d_{Ca-O}	2.36	2.39	1.3

Calculated and experimental peak positions shifts due to isotopic substitution

Table S2 Experimental and calculated (PBE) peak position shifts due to isotopic substitutions. Shifts correspond to the change in peak position between minimum ¹³C (0% for PBE calculations, or natural abundance (1%) in experiments) to a nominal 100% ¹³C substitution. For the v_3 mode and the v_2 mode, the ¹³C and ¹²C peaks are distinct at intermediate substitution levels, so we also report the average value of the wavenumber split between the two isotopic peaks for intermediate substitution ranges. For the v_4 mode, there is no isotopically related split visible, so there are no values for intermediate substitution ranges displayed in this table. Uncertainty estimates are $\pm 2 \text{ cm}^{-1}$ for all experimental values.

	v ₃ shift		v ₂ shift		v_4 shift	
	Expt.	PBE	Expt.	PBE	Expt.	PBE
max, min ¹³ C content	35	39	29	25	2	2
intermediate ¹³ C content (average split)	38	36	27	25	_	_

Experimental Raman spectra

To complement our IR data, typical Raman spectra for calcite powders over the same range of isotopic compositions are shown in Figure S8. Raman spectra were obtained using a Renishaw inVia Raman Microscope 90Q314 with a Renishaw HPNIR830 laser source (633 nm, maximum power 500 mW), using a range of 2000-100 cm⁻¹. IR and Raman spectroscopy obey different selection rules. Specifically, the v_2 and v_3 modes of calcite are not Raman active, whereas the v_1 and v_4 modes are. Thus, the v_4 mode is the only mode for which comparison between Raman and IR spectra is possible. For this peak, we observe a shift to lower wavenumbers with increasing ¹³C content in both IR spectra (main text, Fig. 2d) and Raman spectra (Fig. S8c). The other three Raman peaks (v_1 and two lattice modes in Fig. S8b,d,e) do not show significant variation with isotopic composition changes.

We note that the lattice modes shown in the Raman spectra in Figure S1 occur at wavenumbers (280 cm^{-1} and 150 cm^{-1}) that are far below the detection range of mid-IR spectrometers (due to inherent limitations with window and beamsplitter transparencies below 350 cm^{-1}). Thus, our experiments did not explore the effect of isotopic substitutions on calcite lattice modes in the IR.

Fig. S8 Raman spectra for calcite. (a) shows natural ¹³C abundance (1%), featuring two sharp peaks corresponding to the v_1 and v_4 vibrational modes (1084 and 710 cm⁻¹, respectively) and two broader peaks related to lattice modes. (b)-(e) show expanded views of the four main modes, with vertical lines as a guide to the eye for peak positions at 1% isotope concentration. Nominal ¹³C concentrations are 1% (black), 13% (purple), 25% (blue), 50% (orange), and 100% (red). Only the v_4 peak (c) shifts to lower wavenumbers upon isotope substitution.

Computational studies of ¹³C Isotopic Substitution: Additional Details

Table S3 summarizes the different structures which were constructed by replacing ¹²C atoms by ¹³C atoms in the conventional unit cell of calcite.

Table S3 Summary of different ¹³C contents used for calculations.

# of ¹³ C replaced atoms	¹³ C %
0	0
1^*	8
1	17
2	33
3	50
4	67
5	83
6	100

* Obtained by using a supercell consisting of two calcite hexagonal cells along the *c* axis.

Due to periodic boundary conditions, substitution of one 13 C atom in the conventional hexagonal unit cell will result in a full-layer substitution in the crystal. In order to examine the influence of different configurations of atoms that are not part of the same layer, we used additional computational systems: an hexagonal $2 \times 2 \times 1$ supercell and a rhombohedral $2 \times 2 \times 2$ supercell. For both these supercells structures, it is possible to start from one atom in a layer and then, by addition of 13 C atoms one at a time to the same layer, continue until the whole layer contains only 13 C atoms (maximum of four). When the whole layer is substituted by 13 C atoms, the supercell model reduces to the unit cell model. The calculated IR spectrum of the substituted supercell showm in Fig. S9. As expected, the addition of 13 C atoms to the layer result in an increase of the intensity of the 13 C peaks. Additionally, the positions of the v_3 and v_2 modes also change with a larger isotope content, resulting in a larger splitting between the 12 C and 13 C peak maxima.

Fig. S9 Comparison of calculated IR spectra for a rhombohedral supercell with different numbers of substituted ¹³C atoms within one layer. Vertical lines serve as guides to the eye for peak positions at 0% and 100% ¹³C concentrations.

Next, we examine the influence of isotope proximity on the calcite spectrum for a supercell structure, which allows for lower isotope concentrations compared with the conventional hexagonal unit cell (8% *vs.* 33% ¹³C)). We first substitute one isotope atom in the center of the supercell (4% ¹³C = 1 atom). For the hexagonal $2 \times 2 \times 1$ super cell, one substituted isotope atom will have only ¹²C atoms as 1^{st} neighbours. For substitution of two isotope atoms, their proximity arrangement can be chosen to be either 1^{st} , 2^{nd} or 3^{rd} neighbors (8% ¹³C = 2 atom). The IR spectra corresponding to these configurations are shown in Fig. S10 and show that the line broadening can obscure subtle differences among the spectra. In the top row spectra, we show that setting the full-width half-maximum (FWHM) to half of the experimental value (which is a broadening similar to that used in all calculated spectra presented in the main text) yields no meaningful differences among the different configurations. However, when the FWHM is reduced to one quarter of the experimental broadening (lower row spectra), differences emerge for the v_3 peak, which are consistent with the spectra shown in Fig. 4 in the main text. Therefore, the supercell IR spectra suggest that the discussed spectral changes due to isotopic proximity arrangements occur also at lower isotopic content, although are not always experimentally accessible.

FWHM = $0.5 \times FWHM_{exp}$ (v_3 =50, v_2 =10 and v_4 =2 cm⁻¹)

Fig. S10 Comparison of calculated IR spectra for the hexagonal supercell with different numbers of substituted ¹³C atoms, with the proximity between the substituted atoms being either 1st, 2nd, or 3rd neighbors. The spectra are simulated with two different amounts of broadening: FWHM= $0.5 \times FWHM_{exp}$ (top) and FWHM= $0.25 \times FWHM_{exp}$ (bottom). Vertical lines serve as guides to the eye for peak positions at 0% and 100% ¹³C concentrations.

LO-TO Splitting Additional Details

		0%	о́ ¹³ С	17% ¹³ C				100% ¹³ C	
			$\Delta_{\text{LO-TO}}$	¹² C	$\Delta_{\text{LO-TO}}$	¹³ C	$\Delta_{\text{LO-TO}}$		$\Delta_{\text{LO-TO}}$
<i>v</i> ₃	LO TO	1512 1371	140	1507 1374	133	1353 1344	8	1471 1333	138
v_2	LO TO	839 825	14	838 826	12	809 806	3	814 799	15
v_4	LO TO	681 679	2	680 679	1	677 677	0	679 677	2

Table S4 Calculated LO and TO frequencies (in cm^{-1}) for 0%, 17% and 100% ^{13}C isotope content

Table S5 Comparison of LO-TO splitting frequencies (in cm⁻¹) for calcite (0% ¹³C), based on this work and previous experimental and computational results by others. Experiment results from Hellwege, K. H.; Lesch, W.; Plihal, M.; Schaack, G.Z. *Phys. A-Hadron. Nucl.*, **1970**, *232*, 61-86. Computational (B3LYP) results from Valenzano, L.; Noel, Y.; Orlando, R.; Zicovich-Wilson, C. M.; Ferrero, M.; Dovesi, R. *Theor. Chem. Acc.* **2007**, *117*, 991-1000

		This work (PBE)	$\Delta_{ ext{LO-TO}}$	Exp.	$\Delta_{ ext{LO-TO}}$	Calc. (B3LYP)	$\Delta_{\text{LO-TO}}$
<i>v</i> ₃	LO	1512	140	1549	140	1554	154
	TO	1371	140	1407	142	1400	
<i>v</i> ₂	LO	839	14	890	10	894	20
	TO	825	14	872	10	874	
v_4	LO	681	1	715	3	713	1
	TO	679	1	712	3	712	