Supporting Information

Recyclable Cu/C₃N₄ Composite Catalyzed AHA/A³ Coupling Reactions for the Synthesis of Propargylamines

Hang Xu,^a Jun Wang,^a Peng Wang,^a Xiyu Niu,^a Yidan Luo,^b Li Zhu^b and Xiaoquan Yao*,^a

 ^a Department of Applied Chemistry, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
^b Department of Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China Fax: +86-25-52112626; Phone: +86-25-52112902; E-mail: yaoxq@nuaa.edu.cn

Table of contents

Preparation and characterization of catalyst	S2-S3
Characterization for compounds 2&4	S4-S15
¹ H NMR and ¹³ C NMR spectrum of 2&4	S16-S51

Preparation and characterization of catalyst

The Cu/C₃N₄ catalyst was synthesized following the reported method.^[1] Typically, melamide (2 g) was uniformly mixed with copper(II) acetate (625 mg). The resulting mixture was then heated to 550 °C with 2°C/min in a tube furnace under N₂ atmosphere and kept for 2 h. After cooling to room temperature, the final solid product (Cu-doped C₃N₄) was collected without further purification.

Figure S1. XRD patterns of pure C₃N₄ and Cu/C₃N₄

Figure S1 shows the XRD patterns of pure C_3N_4 and 20% Cu/C₃N₄. It was found that the XRD pattern of 20% Cu/C₃N₄ was similar to pure C_3N_4 . This result indicates that the structure of C_3N_4 remains unchanged when copper ions were host by coordination with the N atom.

Figure S2. TEM images of Cu/C₃N₄

Figure S2 shows the TEM pattern of 20% Cu/C₃N₄. From the images, Cu/C₃N₄ maintains the flexible sheet-like morphology of C₃N₄ with no nanoparticles, possibly from Cu species, being observed on it.

Figure S3. The XPS spectrum of 20% Cu/C₃N₄: (a) survey, (b) Cu 2p, (c) C 1s, (d) N 1s.

The X-ray photoelectron spectroscopy (XPS) patterns of Cu/C₃N₄ were shown in Figure S3. The binding energies of Cu $2p_{3/2}$ and Cu $2p_{1/2}$ shift to 933.38 and 953.07 eV, respectively, indicating Cu (0) makes up a majority of the Cu present. Moreover, Cu NPs were also synthesized and tested as contrast, and it can be seen from Figure S3 (b) that the binding energy values of Cu 2p in Cu/C₃N₄ is slightly higher than these of Cu NPs. The shift might result from the strong interaction between Cu NPs and C₃N₄.^[2] The C 1s at 288.24 eV and N 1s at 398.78 eV are assigned to the sp^2 C=N bond in the striazine ring. The peaks at 288.24 eV and 284.83 eV in the C 1s zone are attributed to electrons originating from a sp² C atom attached to an NH₂ group and to an aromatic carbon atom.^[3]

Characterization for compounds 2 & 4

1-(3-phenylprop-2-yn-1-yl)piperidine (2a, 94%) ^[4]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ: 7.37-7.36 (m, 2H), 7.22-7.20 (m, 3H), 3.43 (s, 2H), 2.52 (br, 4H), 1.60-1.57 (m, 2H), 1.38 (br, 2H); ¹³C NMR (101 MHz, CDCl₃) δ: 131.7, 128.2, 128.0, 123.3, 85.0, 53.5, 48.5, 25.9, 24.0.

1-(3-(p-tolyl)prop-2-yn-1-yl)piperidine (2b, 91%) ^[4]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.33 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 7.6 Hz, 2H), 3.46 (s, 2H), 2.57 (br, 4H), 2.33 (s, 3H), 1.67-1.61 (m, 4H); 1.44 (br, 2H); ¹³C NMR (101 MHz, CDCl₃) δ : 138.0, 131.6, 129.0, 120.3, 85.1, 84.3, 53.5, 48.5, 26.0, 24.0, 21.4.

1-(3-(4-ethylphenyl)prop-2-yn-1-yl)piperidine (2c, 88%) ^[4]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.28 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 3.40 (s, 2H), 2.58-2.50 (m, 6H), 1.58-1.55 (m, 4H), 1.37 (br, 2H), 1.14 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ :143.3, 130.7, 126.8, 119.4, 84.2, 83.1, 52.4, 47.4, 27.8, 24.9, 22.9, 14.4.

1-(3-(4-fluorophenyl)prop-2-yn-1-yl)piperidine (2d, 85%) ^[4]: Yellow liquid. ¹H **NMR** (400 MHz, CDCl₃) δ : 7.40 (dd, $J_1 = 5.6$ Hz, $J_2 = 8.0$ Hz, 2H), 7.01-6.96 (m, 2H), 3.45 (s, 2H), 2.56 (br, 4H), 1.67-1.62 (m, 4H), 1.45 (br, 2H); ¹³C NMR (101 MHz,

CDCl₃) *δ*: 162.3 (d, *J* = 250.5 Hz), 133.5 (d, *J* = 8.1 Hz), 119.4 (d, *J* = 3.0 Hz), 115.5 (d, *J* = 11.11 Hz), 84.8, 83.9, 53.5, 48.5, 26.0, 24.0.

1-(3-(4-bromophenyl)prop-2-yn-1-yl)piperidine (2e, 92%) ^[5]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.42 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 3.45 (s, 2H), 2.56 (br, 4H), 1.67-1.62 (m, 4H), 1.46-1.45 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃): δ : 159.4, 133.1, 115.5, 113.9, 84.8, 83.5, 55.3, 53.5, 48.5, 26.0, 24.0.

1-(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)piperidine (2f, 90%): Yellow liquid. **¹H NMR** (400 MHz, CDCl₃) δ : 7.57-7.52 (m, 4H), 3.49 (s, 2H), 2.57 (br, 4H), 1.68-1.63 (m, 4H), 1.46 (br, 2H); ¹³C NMR (101 MHz, CDCl₃) δ : 132.0, 129.8 (q, *J* = 32.8 Hz), 127.2 (d, *J* = 1.0 Hz), 125.2 (dd, *J*₁ = 3.7 Hz, *J*₂ = 7.6 Hz), 124.0 (q, *J* = 273.2 Hz), 87.9, 83.8, 53.6, 48.5, 26.0, 23.9; MS (EI) m/z (%): 267 (M⁺), 238, 225, 211, 183 (100), 164, 143, 133, 115, 84, 42; HRMS calcd for C₁₅H₁₆NF₃: 267.1235; found 267.1241.

1-(3-(m-tolyl)prop-2-yn-1-yl)piperidine (2g, 95%) ^[4]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.26-7.23 (m, 2H), 7.20-7.16 (m, 1H), 7.11-7.10 (m, 1H), 3.48 (s, 2H), 2.57 (br, 4H), 2.32 (s, 3H), 1.67-1.62 (m, 4H), 1.45 (br, 2H); ¹³C NMR (101 MHz, CDCl₃): δ ¹³C NMR (101 MHz, CDCl₃) δ : 137.9, 132.3, 128.9, 128.8, 128.1, 123.1, 85.2, 84.6, 53.4, 48.5, 26.0, 23.9, 21.2.

1-(hept-2-yn-1-yl)piperidine (2h, 45%) ^[5]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 3.14 (s, 2H), 2.41 (br, 4H), 2.14-2.11 (m, 2H), 1.56-1.53 (m, 4H), 1.46-1.31 (m, 6H), 0.84 (t, J = 6.8 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 84.1, 74.2, 52.4, 47.1, 30.0, 24.9, 23.0, 21.0, 17.4, 12.6.

1-(3-phenylprop-2-yn-1-yl)pyrrolidine (**2i**, **85%**) ^[4]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ: 7.44-7.42 (m, 2H), 7.30-7.28 (m, 3H), 3.63 (s, 2H), 2.70-2.69 (m, 4H), 1.86-1.83 (m, 4H), 1.74 (br, 2H); ¹³C NMR (101 MHz, CDCl₃) δ: 131.7, 128.2, 128.0, 123.3, 85.4, 84.4, 52.7, 43.9, 23.8.

1-(3-(p-tolyl)prop-2-yn-1-yl)pyrrolidine (2j, 81%) ^[5]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ: 7.32 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 7.6 Hz, 2H), 3.62 (s, 2H), 2.69 (br, 4H), 2.33 (s, 3H), 1.87-1.80 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ: 137.0, 130.6, 128.0, 119.2, 83.6, 83.4, 51.7, 42.9, 22.8, 20.4.

1-(3-(4-ethylphenyl)prop-2-yn-1-yl)pyrrolidine (2k, 78%): Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.28 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 3.55 (s, 2H), 2.62-2.61 (m, 4H), 2.56 (q, J = 7.6 Hz, 2H), 1.77-1.75 (m, 4H), 1.15 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 143.3, 130.7, 126.8, 119.4, 83.6, 83.5, 51.6, 42.8, 27.8, 22.8, 14.3; MS (EI) m/z (%): 213 (M⁺), 198, 184 (100), 170, 143, 128, 115, 99, 83, 70, 42; HRMS calcd for C₁₅H₁₉N: 213.1517; found 213.1514.

1-(3-(4-methoxyphenyl)prop-2-yn-1-yl)pyrrolidine (2l, 84%) ^[5]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.36 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 3.61 (s, 2H), 2.69 (br, 4H), 1.83-1.82 (m, 4H); ¹³**C NMR** (101 MHz, CDCl₃): δ : 158.4, 132.1, 114.4, 112.8, 83.1, 82.8, 54.3, 51.7, 42.9, 22.8.

1-(3-(4-bromophenyl)prop-2-yn-1-yl)pyrrolidine (2m, 81%) ^[5]: Yellow liquid. ¹H

NMR (400 MHz, CDCl₃) δ : 7.42 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 3.60 (s, 2H), 2.68 (br, 4H), 1.84-1.83 (m, 4H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 133.2, 131.5, 122.3, 122.2, 86.8, 83.3, 52.8, 43.9, 23.8.

N,N-diethyl-3-phenylprop-2-yn-1-amine (**2n 90%**) ^[4]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.36-7.34 (m, 2H), 7.23-7.19 (m, 3H), 3.58 (s, 2H), 2.57 (q, *J* = 7.2 Hz, 4H), 1.05 (t, *J* = 7.2 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 131.7, 128.3, 128.0, 123.4, 85.1, 84.3, 47.3, 41.5, 12.6.

N,N-diethyl-3-(p-tolyl)prop-2-yn-1-amine (20, 90%) ^[5]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.24 (d, *J* = 7.6 Hz, 2H), 7.02 (d, *J* = 7.6 Hz, 2H), 3.56 (s, 2H), 2.55 (q, *J* = 7.2 Hz, 4H), 2.26 (s, 3H), 1.04 (t, *J* = 7.2 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 136.9, 130.6, 128.0, 119.3, 84.0, 82.5, 46.3, 40.4, 20.4, 11.6.

N,N-diethyl-3-(4-ethylphenyl)prop-2-yn-1-amine (**2p**, **82%**): Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.27 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 3.56 (s, 2H), 2.55 (q, J = 7.2 Hz, 6H), 1.14 (t, J = 7.6 Hz, 3H), 1.04 (t, J = 7.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 144.3, 131.7, 127.8, 120.6, 85.1, 83.6, 47.3, 41.5, 28.8, 15.4, 12.6; MS (EI) m/z (%): 215 (M⁺), 200, 143 (100), 128, 115, 102, 93, 56, 42; HRMS calcd for C₁₅H₂₁N: 215.1674; found 215.1678.

N,N-diethyl-3-(4-methoxyphenyl)prop-2-yn-1-amine (**2q, 85%**) ^[5]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.36 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.4 Hz, 2H), 3.80 (s, 3H), 3.63 (s, 2H), 2.63 (q, J = 7.2 Hz, 4H), 1.12 (t, J = 6.8 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 159.3, 133.1, 115.5, 113.9, 84.8, 82.7, 55.3, 47.3, 41.5, 12.6.

N,N-diethyl-3-(4-fluorophenyl)prop-2-yn-1-amine (2r, 86%) ^[6]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.39 (dd, $J_1 = 5.6$ Hz, $J_2 = 8.0$ Hz, 2H), 7.01-6.96 (m, 2H), 3.62 (s, 2H), 2.62 (q, J = 7.2 Hz, 4H), 1.12 (t, J = 7.2 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 162.3 (d, J = 250.5 Hz), 133.6, 119.4, 115.5 (d, J = 22.2 Hz), 84.2, 83.9, 47.3, 41.5, 12.6.

3-(4-bromophenyl)-N,N-diethylprop-2-yn-1-amine (**2s, 88%**) ^[5]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ: 7.35 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 3.55 (s, 2H), 2.55 (q, *J* = 7.2 Hz, 4H), 1.04 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ: 133.2, 131.5, 122.3, 122.1, 85.8, 84.0, 47.4, 41.5, 12.6.

4-(3-phenylprop-2-yn-1-yl)morpholine (2t, 46%) ^[5]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.45-7.43 (m, 2H), 7.31-7.30 (m, 3H), 3.79-3.77 (m, 4H), 3.51 (s, 2H), 2.65 (t, J = 4.4 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ : 131.7, 128.2, 123.0, 85.6, 84.0, 66.9, 52.5, 48.1.

N,N-diisopropyl-3-phenylprop-2-yn-1-amine (**2u, 20%**) ^[5]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.41-7.38 (m, 2H), 7.30-7.27 (m, 3H), 3.67 (s, 2H), 3.21-3.24 (m, 2H), 1.16 (d, J = 6.8 Hz, 12H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 131.5, 128.2, 127.8, 123.8, 88.9, 83.6, 48.6, 34.8, 20.6.

2-benzyl-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline (4a, 96%) ^[7]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.51-7.45 (m, 4H), 7.37-7.34 (m, 2H), 7.30-7.25 (m, 7H), 7.19-7.13 (m, 3H), 4.84 (s, 1H), 4.02 (d, J = 13.6 Hz, 1H), 3.97 (d, J = 13.6 Hz, 1H), 3.14-3.09 (m, 2H), 2.91-2.82 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ : 137.3, 134.4, 133.0, 130.8, 128.3, 128.0, 127.3, 127.2, 127.0, 126.8, 126.2, 125.9, 124.8, 122.2, 86.5, 85.8, 58.5, 53.3, 44.7, 28.0.

2-(4-methylbenzyl)-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline (4b, 92%) ^[7]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.44-7.43 (m, 2H), 7.36-7.34 (m, 2H), 7.28-7.24 (m, 4H), 7.16-7.11 (m, 5H), 4.78 (s, 1H), 3.91 (d, *J* = 12.0 Hz, 1H), 3.87 (d, *J* = 12.0 Hz, 1H), 3.09-2.98 (m, 2H), 2.84-2.78 (m, 2H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 136.8, 135.5, 135.1, 134.1, 131.8, 129.3, 129.0, 128.2, 128.0, 127.8, 126.9, 125.8, 123.3, 87.5, 86.9, 59.4, 54.3, 45.7, 29.0, 21.2.

2-(4-fluorobenzyl)-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline (4c, 94%) ^[7]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.35-7.32 (m, 4H), 7.20-7.16 (m, 4H), 7.08-7.03 (m, 3H), 6.96-6.92 (m, 2H), 4.67 (s, 1H), 3.82 (d, *J* = 16.0 Hz, 1H), 3.78 (d, *J* = 16.0 Hz, 1H), 3.01-2.92 (m, 2H), 2.73-2.70 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): *δ*: 161.1 (d, *J* = 246.4 Hz), 134.3, 133.0, 130.7, 129.7 (d, *J* = 8.0 Hz), 128.0, 127.2, 127.1, 126.8, 126.0, 124.8, 122.1, 114.1 (d, *J* = 22.2 Hz), 86.3, 85.9, 57.8, 53.2, 44.7, 28.0.

2-(4-bromobenzyl)-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline (4d, 96%)^[7]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ: 7.62-7.60 (m, 2H), 7.51-7.49 (m, 4H), 7.33 (br, 3H), 7.11-7.10 (m, 3H), 7.01-7.00 (m, 1H), 5.01 (s, 1H), 3.85 (d, *J* = 14.8 Hz, 1H), 3.80 (d, *J* = 14.8 Hz, 1H), 2.94-2.87 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ: 137.4, 135.0, 134.2, 131.8, 131.4, 130.2, 128.7, 128.4, 128.3, 126.7, 126.1, 125.6, 122.7, 121.7, 89.0, 84.2, 61.0, 52.2, 47.2, 29.6.

2-(3-methylbenzyl)-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline (4e, 95%) ^[7]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.45-7.44 (m, 2H), 7.29-7.23 (m, 7H), 7.16-7.08 (m, 4H), 4.80 (s, 1H), 3.92 (d, J = 12.0 Hz, 1H), 3.86 (d, J = 12.0 Hz, 1H), 3.07-2.99 (m, 2H), 2.84-2.79 (m, 2H), 2.35 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 138.3, 138.0, 135.6, 134.2, 131.9, 130.1, 129.1, 128.3, 128.2, 128.1, 128.0, 127.9, 127.0, 126.4, 125.9, 123.4, 87.7, 86.9, 59.7, 54.5, 45.8, 29.1, 21.5.

2-(2-methylbenzyl)-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline (4f, 95%) ^[7]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.44-7.43 (m, 3H), 7.28-7.23 (m, 4H), 7.17-7.11 (m, 6H), 4.77 (s, 1H), 3.93 (d, J = 13.2 Hz, 1H), 3.87 (d, J = 13.2 Hz, 1H), 3.11-2.97 (m, 2H), 2.82-2.75 (m, 2H), 2.42 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 137.9, 136.3, 135.7, 134.2, 131.7, 130.3, 130.0, 129.0, 128.2, 128.0, 127.8, 127.2, 126.8, 125.8, 125.6, 123.3, 87.8, 86.8, 57.5, 54.4, 45.7, 29.0, 19.3.

2-(2-bromobenzyl)-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline (**4g**, **91%**) ^[7]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.51-7.49 (m, 2H), 7.47-7.45 (m, 2H), 7.20-7.18 (m, 5H), 7.07-6.99 (m, 4H), 4.78 (s, 1H), 3.97 (d, *J* = 14.4 Hz, 1H), 3.92 (d, *J* = 14.4 Hz, 1H), 3.08-2.90 (m, 2H), 2.75-2.67 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 136.8, 134.4, 133.0, 131.8, 130.8, 129.6, 128.0, 127.5, 127.1, 127.0, 126.7, 126.2, 125.9, 124.8, 123.8, 122.2, 86.6, 85.7, 57.8, 53.7, 44.7, 28.1.

2-octyl-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline (4h, 72%): Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.41-7.40 (m, 2H), 7.27-7.25 (m, 3H), 7.11-7.07 (m, 4H), 3.94 (d, *J* = 14.8 Hz, 1H), 3.79 (d, *J* = 14.8 Hz, 1H), 3.81 (s, 1H), 3.05-2.92 (m, 4H), 3.94 (m, 2H), 3H), 2.82-2.78 (m, 1H), 1.84-1.81 (m, 2H), 1.62-1.47 (m, 2H), 1.35-1.26 (m, 9H), 0.88-0.87 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) *δ*: 135.1, 134.4, 131.7, 128.7, 128.2, 127.9, 126.8, 126.0, 125.6, 123.3, 87.3, 86.1, 57.9, 51.9, 47.4, 31.9, 29.5, 29.4, 29.2, 26.8, 22.7, 14.0; MS (EI) m/z (%): 345 (M⁺, 100), 297, 296, 258, 242, 227, 194, 160. HRMS calcd for C₂₅H₃₁N: 345.2457; found 345.2446.

1-(phenylethynyl)-2-(thiophen-2-ylmethyl)-1,2,3,4-tetrahydroisoquinoline (4i, 95%): Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.45 (br, 2H), 7.31-7.28 (m, 5H), 7.19-7.13 (m, 4H), 7.00 (br, 1H), 4.95 (s, 1H), 4.26-4.18 (m, 2H), 3.16-3.14 (m, 2H), 2.99-2.86 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ : 140.9, 134.2, 133.0, 130.8, 128.0, 127.2, 127.1, 126.8, 125.9, 125.5, 125.3, 124.8, 124.2, 122.1, 86.2, 85.9, 53.2, 53.0, 44.6, 28.0; MS (EI) m/z (%): 329 (M⁺), 296, 252, 202, 145 (100), 132, 105, 97; HRMS calcd for C₂₂H₁₉NS: 329.1238; found 329.1226.

2-benzyl-1-(2-(4-methphenyl)ethynyl)-1,2,3,4-tetrahydroisoquinoline (**4j**, **99%**): Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.39 (d, *J* = 7.2 Hz, 2H), 7.27-7.24 (m, 4H), 7.21-7.17 (m, 3H), 7.08-7.01 (m, 5H), 4.70 (s, 1H), 3.87 (d, *J* = 12.0 Hz, 1H), 3.82 (d, *J* = 12.0 Hz, 1H), 3.04-2.91 (m, 2H), 2.76-2.70 (m, 2H), 2.26 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 137.3, 137.1, 134.6, 133.0, 130.6, 128.3, 127.9, 127.3, 126.8, 126.1, 125.9, 124.8, 119.1, 85.9, 85.7, 58.5, 53.4, 44.7, 28.0, 20.4; MS (EI) m/z (%): 337 (M⁺), 336, 335 (100), 334, 333, 318, 304, 291, 241, 215, 201, 152; HRMS calcd for C₂₅H₂₃N: 337.1830; found 337.1822.

2-benzyl-1-(2-(4-methoxyphenyl)ethynyl)-1,2,3,4-tetrahydroisoquinoline (4k, 93%) ^[7]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.46 (d, *J* = 7.6 Hz, 2H), 7.39-7.31 (m, 4H), 7.29-7.22 (m, 2H), 7.15-7.10 (m, 3H), 6.82-6.80 (m, 2H), 4.77 (s, 1H), 3.94 (d, *J* = 13.2 Hz, 1H), 3.89 (d, *J* = 13.2 Hz, 1H), 3.78 (s, 3H), 3.11-2.99 (m, 2H), 2.81-2.78 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ : 159.4, 138.4, 135.7, 134.0, 133.2, 129.3, 129.0, 128.3, 127.8, 127.1, 126.8, 125.8, 115.4, 113.8, 86.6, 86.0, 59.6, 55.3, 54.4, 45.7, 29.0.

2-Benzyl-1-(2-(3-methphenyl)ethynyl)-1,2,3,4-tetrahydroisoquinoline (**4l**, **99%**): Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.46 (d, *J* = 7.6 Hz, 2H), 7.35-7.31 (m, 2H), 7.29-7.24 (m, 4H), 7.19-7.08 (m, 5H), 4.78 (s, 1H), 3.95 (d, *J* = 13.2 Hz, 1H), 3.91(d, *J* = 13.2 Hz, 1H), 3.11-2.98 (m, 2H), 2.84-2.77 (m, 2H), 2.30 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 138.3, 137.9, 135.6, 134.1, 132.4, 129.4, 129.1, 129.0, 128.9, 128.4, 128.2, 127.9, 127.2, 127.0, 125.9, 123.1, 87.1, 59.6, 54.4, 45.8, 29.1, 21.2; MS (EI) m/z (%): 337 (M⁺) 336 (100), 310, 260, 246, 222, 218, 202, 116, 91. HRMS calcd for C₂₅H₂₃N: 337.1830; found 337.1825.

2-benzyl-1-((**4-fluorophenyl**)ethynyl)-1,2,3,4-tetrahydroisoquinoline (**4m**, **90%**) ^[8]: Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.47-7.40 (m, 4H), 7.34 (t, *J* = 6.8 Hz, 2H), 7.30-7.25 (m, 2H), 7.17-7.12 (m, 3H), 6.99 (t, *J* = 8.4 Hz, 2H), 4.78 (s, 1H), 3.94 (d, *J* = 13.2 Hz, 1H), 3.89 (d, *J* = 13.2 Hz, 1H), 3.10-3.00 (m, 2H), 2.82-2.79 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ : 162.4 (d, *J* = 249.5 Hz), 138.2, 135.3, 134.0, 133.6 (d, *J* = 9.1 Hz), 129.3, 129.0, 128.4, 127.8, 127.2, 127.0, 125.9, 119.3 (d, *J* = 3.0 Hz), 115.4 (d, *J* = 33.3 Hz), 87.2, 85.8, 59.6, 54.3, 45.6, 29.0.

2-benzyl-1-(2-cyclohexylethynyl)-1,2,3,4-tetrahydroisoquinoline (**4n**, **99%**) ^[9]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.45-7.43 (m, 2H), 7.34-7.33 (m, 2H), 7.28-7.24 (m, 1H), 7.20-7.19 (m, 1H), 7.12-7.07 (m, 3H), 4.54 (s, 1H), 3.90 (d, *J* = 13.2 Hz, 1H), 3.80 (d, *J* = 13.2 Hz, 1H), 3.02-2.92 (m, 2H), 2.80-2.70 (m, 2H), 2.44 (s, 1H), 1.80-1.71 (m, 5H), 1.49-1.44 (m, 3H), 1.36-1.31 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 138.6, 136.4, 133.9, 129.4, 128.9, 128.3, 127.8, 127.1, 126.7, 125.7, 91.4, 77.8, 59.5, 54.1, 45.7, 33.1, 33.0, 29.2, 29.1, 26.0, 24.9.

2-benzyl-1-(hex-1-yn-1-yl)-1,2,3,4-tetrahydroisoquinoline (40, 92%) ^[9]: Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.43 (d, J = 7.2 Hz, 2H), 7.34-7.31 (m, 2H), 7.28-7.23 (m, 1H), 7.20-7.18 (m, 1H), 7.13-7.09 (m, 3H), 4.54 (s, 1H), 3.88 (d, J = 13.2 Hz, 1H), 3.79 (d, J = 13.2 Hz, 1H), 3.01-2.91 (m, 2H), 2.77-2.72 (m, 2H), 2.24 (t, J = 7.2 Hz, 2H), 1.54-1.41 (m, 4H), 0.92 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ : 138.6, 136.4, 133.9, 129.3, 128.9, 128.3, 127.8, 127.1, 126.7, 125.7, 87.2, 77.9, 59.5, 54.2, 45.6, 31.2, 29.1, 22.1, 18.6, 13.7.

Reference:

- [1] H. Xu, K. Wu, J. Tian, L. Zhu and X Yao, Green Chem., 2018, 20, 793.
- [2] L. Wang, M. Yu, C. Wu, N. Deng, C. Wang and X. Yao, Adv. Synth. Catal., 2016, 358, 2631.
- [3] (a) Y. J. Cui, Z. X. Ding, X. Z. Fu and X. C. Wang, *Angew. Chem.*, 2012, 124, 11984, (*Angew. Chem., Int. Ed.*, 2012, 51, 11814); (b) A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. Muller, R. Schlogl and J. M. Carlsson, *J. Mater. Chem.*, 2008, 18, 4893.
- [4] J. Gao, Q. W. Song, L. N. He, Z. Z. Yang and X. Y. Dou, *Chem. Commun.*, 2012, 48, 2024.
- [5] S. Zeng, S. Xu, Y. Wang, M. Yu, L. Zhu and X. Yao, Chin. J. Org. Chem., 2015, 35, 827.
- [6] R. K. Sharma, S. Sharma and G. Gaba, RSC Adv., 2014, 4, 49198.
- [7] G. Shao, Y. He, Y. Xu, J. Chen, H. Yu and R. Cao, Eur. J. Org. Chem., 2015, 4615.
- [8] W. Lin, T. Cao, W. Fan, Y. Han, J. Kuang, H. Luo, B. Miao, X. Tang, Q. Yu, W. Yuan, J. Zhang, C. Zhu and S. Ma, *Angew. Chem., Int. Ed.*, 2014, **53**, 277.
- [9] Q. H. Zheng, W. Meng, G. J. Jiang and Z. X. Yu, Org. Lett., 2013, 15, 5928.

2a¹³C NMR

2c ¹H NMR

 $2h^{1}HNMR$

 $2t^{13}C$ NMR

4a¹³C NMR

4e¹³C NMR

fl (ppm)

4i¹³C NMR

4j¹H NMR

4k ¹H NMR

4l 1 H NMR

¹H NMR

