Supplementary Information

Quantitative Syntheses of Permethylated $closo-1,10-R_2C_2B_8Me_8$ (R = H, Me) Carboranes. Egg-shaped Hydrocarbons on the Frontier between Inorganic and Organic Chemistry

Mario Bakardjiev, Aleš Růžička, Zdeňka Růžičková, Josef Holub, Oleg L. Tok Drahomír Hnyk, Jindřich Fanfrlík, and Bohumil Štíbr,*

RSC Advan.

Selected NMR measurements (CDCl₃)

Figure S.1 190.2 MHz ¹¹B NMR spectrum of the starting *closo*-1,10-H₂C₂B₈H₈ (1a). Ordered as assignment/ δ (¹¹B in ppm relative to BF₃OEt₂/ ¹J_{BH} in Hz.

Figure S2. 600 MHz ¹H NMR spectrum of the starting *closo*-1,10-H₂C₂B₈H₈ (**1a**). Ordered as assignment/ δ (¹H in ppm, relative to TMS). The quartet at 2.0 ppm reflects the ¹J_{BH} coupling.

Figure S3. 150.9 MHz ¹³C-{¹H} NMR spectrum of the starting *closo*-1,10-H₂C₂B₈H₈(**1a**). Ordered as assignment/ δ (¹³C in ppm, relative to TMS).

Figure S4. 190.2 MHz ¹¹B NMR spectrum of the starting *closo*-1,10-Me₂C₂B₈H₈(**1b**). Ordered as assignment/ δ (¹¹B in ppm relative to BF₃OEt₂/¹J_{BH} in Hz. The BH doublet is less pronounced, probably because of the effect of the CMe groups.

Figure S5. 600 MHz ¹H NMR spectrum of the starting *closo*-1,10-Me₂C₂B₈H₈ (**1b**). Ordered as assignment/ δ (¹H in ppm, relative to TMS). The broader signal at ~2.20 ppm reflects the ¹J_{BH} coupling combined with long-range couplings due to the two non equivalent CMe groups. The high-field impurities near ~0.00 ppm are due to traces of silicon grease.

Figure S6. 150.9 MHz ¹³C-{¹H} NMR spectrum of the starting *closo*-1,10-Me₂C₂B₈H₈ (**1b**). Ordered as assignment/ δ (¹³C in ppm, relative to TMS).

Figure S7. 190.2 MHz ¹¹B NMR spectrum of *closo*-1,10-H₂C₂B₈Me₈ (**2a**). Ordered as assignment/ δ (¹¹B in ppm relative to BF₃OEt₂/ ¹J_{BH} in Hz. The singlet shape proves the persubstitution by Me groups in all B-positions.

Figure S8. 600 MHz ¹H NMR spectrum of *closo*-1,10-H₂C₂B₈Me₈ (**2a**). Ordered as assignment/ δ (¹H in ppm, relative to TMS). The high-field BMe signal at ~-0.05 ppm reflects absolutely clean permethylation in all B-sites.

Figure S9. 150.9 MHz ¹³C NMR spectrum of *closo*-1,10-H₂C₂B₈Me₈(**2a**). Ordered as assignment/ δ (¹³C in ppm, relative to TMS).

Figure S.10 190.2 MHz ¹¹B NMR spectrum of *closo*-1,10-Me₂C₂B₈Me₈(**2b**). Ordered as assignment/ δ (¹¹B in ppm relative to BF₃OEt₂). The singlet shape proves the permethylation in all positions.

Figure S 11. 600 MHz ¹H NMR spectra of *closo*-1,10-Me₂C₂B₈Me₈ (**2b**) (a) crude product (b) after sublimation removing the minor organic impurities. Ordered as assignment/ δ (¹H in ppm, relative to TMS).

Figure S12. 150.9 MHz ¹³C-{¹H} NMR spectrum of *closo*-1,10-Me₂C₂B₈Me₈ (**2b**). Ordered as assignment/ δ (¹³C in ppm, relative to TMS).

Figure S13. 190.2 MHz ¹¹B (left) and 600 MHz ¹H (right) NMR spectra of *closo*-1,10-H₂C₂B₈Me₇-2-OTf (**5a**). Ordered as assignment $/\delta$ (¹¹B in ppm relative to BF₃OEt₂) or assignment/ δ (¹H in ppm, relative to TMS).

Figure S14. 150.9 MHz ¹³C-{¹H} NMR spectrum of *closo*-1,10-H₂C₂B₈Me₇-2-OTf (**5a**). Ordered as assignment/ δ (¹³C in ppm, relative to TMS).

Cartesian coordinates for *closo*-1,10-H₂C₂B₈Me₈ at the MP2/TZVP level

	x	У	Z
С	-0.0046	55 -1.7179	9 0.59756
В	-0.9317	1 -1.2769	3 -0.63233

В	0.93432 -1.27816 -0.62378
В	0.92706 -0.50506 1.07451
В	-0.93903 -0.50378 1.06593
В	0.00656 -0.06157 -1.60627
В	1.32085 0.48427 -0.39931
В	-0.00372 1.03182 0.79549
В	-1.31808 0.48599 -0.41151
С	0.00365 1.31214 -0.78185
Н	-0.00732 -2.7028 1.04595
С	-1.95151 -2.28565 -1.30087
С	1.9586 -2.28839 -1.28313
С	-1.96684 -0.66534 2.25839
С	1.94354 -0.66798 2.27646
С	0.01409 -0.07487 -3.18875
С	-2.76222 1.07283 -0.68448
С	2.76806 1.06941 -0.6595
С	-0.00799 2.21661 1.84464
Н	0.00641 2.29693 -1.2303
Н	-2.52396 0.25416 2.44892
Н	-2.69363 -1.45528 2.04715
Н	-1.45438 -0.9402 3.18506
Н	-2.50378 -1.8275 -2.12382
Н	-1.43347 -3.16368 -1.6978
Н	-2.68278 -2.64692 -0.57175
Н	2.52488 -1.82863 -2.0956
Н	2.6774 -2.65781 -0.54578
Н	1.44154 -3.16128 -1.69253
Н	2.50161 0.25014 2.47078
Н	1.42179 -0.93994 3.19879
Н	2.66984 -1.46041 2.07302
Н	3.55363 0.38093 -0.34165
Н	2.92213 1.28004 -1.72193
Н	-2.90451 1.29018 -1.74719
Н	-3.55132 0.38256 -0.37953
Н	-2.91465 2.01056 -0.14195
Н	-0.88807 2.85348 1.71524
Н	-0.01077 1.85423 2.8746
Н	0.87143 2.85541 1.72054
Н	2.9146 2.0105 -0.12124
Н	0.01253 -1.08964 -3.59174
Н	-0.86184 0.44268 -3.59093
Н	0.89764 0.43638 -3.58224

Cartesian coordinates for *closo*-1,10-Me₂C₂B₈Me₈ at the MP2/TZVP level

С	-1.683432	0.029319	0.005832
В	-0.760123	-0.589950	1.165592
В	-0.731126	1.179253	0.604213
В	-0.748730	0.620092	-1.163514
В	-0.777661	-1.149359	-0.605724

В	0.766468	0.382106	1.245774
В	0.775028	1.237618	-0.402977
В	0.742441	-0.408825	-1.256792
В	0.733620	-1.264508	0.388274
С	1.683479	-0.028823	-0.007648
С	-3.186515	0.042219	0.019538
С	-1.422330	-1.246644	2.443946
С	-1.355353	2.468153	1.276985
С	-1.459779	-2.418138	-1.260864
С	-1.392658	1.293113	-2.442680
С	1.435961	0.807001	2.615158
С	1.361939	-2.648984	0.826509
С	1.453634	2.601037	-0.832989
С	1.378542	-0.853410	-2.635743
С	3.186554	-0.046661	-0.001020
Н	-3.561156	0.744023	0.767446
Н	-3.582614	0.338098	-0.954033
Н	-3.575928	-0.949394	0.258510
Н	-0.727549	-3.112590	-1.678082
Н	-2.051748	-2.969011	-0.522662
Н	-2.142006	-2.130357	-2.066921
Н	-0.678143	-1.591996	3.164651
Н	-2.078607	-0.537653	2.958501
Н	-2.037876	-2.108796	2.167407
Н	-0.589450	3.178373	1.595580
Н	-2.026571	2.990700	0.588280
Н	-1.944945	2.203008	2.160631
Н	-0.636263	1.670921	-3.133809
Н	-2.013096	0.578452	-2.993029
Н	-2.038028	2.133019	-2.166805
Н	2.068634	1.691021	2.485637
Н	0.695752	1.041614	3.382982
Н	2.077002	0.010164	3.005538
Н	2.135538	2.456915	-1.676875
Н	0.719053	3.354506	-1.124859
H	2.044844	3.019672	-0.011961
H	3.578788	-0.273779	-0.994435
H	3.580625	0.923799	0.307190
H	3.560446	-0.801468	0.693721
H	1.949789	-2.539546	1.743725
H	0.598/02	-3.406782	1.015532
H	2.036107	-3.040784	0.058489
H	2.010655	-1./38616	-2.515152
H	0.617/05	-1.092467	-5.581/34
Н	2.010499	-0.062265	-3.051834

Computed ¹¹B NMR (GIAO-MP2/II//MP2/TZVP), in ppm with respect to BF₃.OEt₂ -12.6 ppm 4a

-0.8 ppm 4c -2.4 ppm 4d