Silver-Catalyzed Direct Benzylation of Acetanilide: A Highly Efficient Approach to Unsymmetrical Triarylmethanes

Yuting Li,^a Yan Zhu,^a Guangliang Tu,^a Jingyu Zhang*^b and Yingsheng Zhao*^a

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

^b College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China

Supporting Information

Table of Contents

1. Reagents	2
2. Instruments	2
3. Optimization of reaction conditions	2
4. Preparation of substrates	4
5. Dibenzylation with different acetanilide	6
6. Dibenzylation with different benzhydrol	10
7. Gram-Scale Reactions	13
8. Preliminary mechanistic study	13
9. References	14
10. XRD data of the compound 3ca , 3ha , 3ja , 3la	14
11. ¹ H and ¹³ C NMR spectra	17

1. Reagents: Unless otherwise noted, all reagents were purchased from Acros, Alfa, Adamas and used without further purification. Column chromatography purifications were performed using 300–400 mesh silica gel.

2. Instruments: NMR spectra were recorded on Varian Inova-400 MHz, Inova-300 MHz, Bruker DRX-400 or Bruker DRX-500 instruments and calibrated using residual solvent peaks as internal reference. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet. HRMS analysis were carried out using TOF-MS instrument with EI source.

3. Optimization of reaction conditions

NHAC +	Ph ₂ CHOH AgOTf 10 % solvent 0.2 M ,12	Ph Ph NHAc
1a	2a	Ph 3a
Entry	Solvent	Yield (%) ^b
1	DCE	78
2	HFIP	0
3	<i>t</i> -Amyl-OH	0
4	t-BuOH	0
5	toluene	6
6	1,4-dioxane	5
7	MeCN	0
8	THF	0
9	DMSO	0

Table S1	Screening	of sol	venta
I ADIC SI.	Screening	01 201	VCIII

^{*a*}**1a** (0.1 mmol), **2a** (0.2 mmol), AgOTf (10 mol%), solvent (1 mL), 120 °C, 8 h.^{*b*}Yields were based on LC-MS analysis using acety benzene as an internal standard.

Table S	3. Scre	ening	of	Aga
---------	---------	-------	----	-----

			Ph Ph
+	Ph ₂ CHOH	[Ag] 10 %	Ph
1a	2a		 Ph 3a
Entry		Additive	Yield (%) ^b
1		AgNTf	15
2		AgNO ₂	0
3		AgOAc	0
4		Ag_2CO_3	0
5		Åg ₂ O	0
6		AgCl	0
7		AgTFA	5
8		ÁgO	0
9		AgOTs	Trace
10		AgOTf	78
11		PhCOOAg	0
12		AgBF ₄	Trace
13		AgOPiv	0
14		Ag_3PO_4	0
15		AgSbF ₆	Trace

^{*a*}**1a** (0.1 mmol), **2a** (0.2 mmol), [Ag] (10 mol%), DCE (1 mL), 120 °C, 8 h.^{*b*}Yields were based on LC-MS analysis using acety benzene as an internal standard.

Table S4. Control experiment^a

^{*a*}**1a** (0.1 mmol), **2a** (0.2 mmol), cat (10 mol%), DCE(1 mL), 120 °C, 8 h.^{*b*}Yields were based on LC-MS analysis using acety benzene as an internal standard.

NHAC +	Ph ₂ CHOH	cat x %	Ph Ph NHAc
1a	2a		Ph 3a
Entry		Cat	Yield (%) ^b
1	F	eCl ₃ 20%	5
2	A	gOTf 10%	78
3	Fe	(OTf) ₃ 20%	64
4	Mg	(OTf) ₂ 20%	0
5	Ni	(OTf) ₃ 20%	0
6	Zn	(OTf) ₂ 20%	5
7	I	nBr ₃ 20%	trace
8	N	aOTf 20%	0
9	Cu	(OTf) ₂ 20%	15
10	In(OTf) ₃ 20%	trace
11	Sn	(OTf) ₃ 20%	0
12	Sc	(OTf) ₃ 20%	0
13	Al	(OTf) ₃ 20%	10
14	A	AgF ₂ 20%	0

Table S5. Screening of cat^a

^{*a*}**1a** (0.1 mmol), **2a** (0.2 mmol), cat (x mol%), DCE (1 mL), 120 °C, 8 h.^{*b*}Yields were based on LC-MS analysis using acety benzene as an internal standard.

Table S5. Screening the load of cat^a

NHAC -	⊢ Ph₂CHOH	AgOTf x %	Ph Ph NHAc
1a	2a		Ph 3a
Entry	The l	oad of cat (%)	Yield (%) b
1		5	60
2		10	78
3		20	76

^{*a*}**1a** (0.1 mmol), **2a** (0.2 mmol), AgOTf (x mol%), DCE (1 mL), 120 °C, 8 h.^{*b*}Yields were based on LC-MS analysis using acety benzene as an internal standard.

4. Preparation of substrates

Representative procedure for the preparation of acetanilides 1a~101

The amine (20.0 mmol) was dissolved in 40 mL of CH_2Cl_2 and cooled to 0 °C using an ice bath. NEt₃ (22.0 mmol, 1.10 equiv) was added to the amine solution followed by the corresponding acid chloride (20.0 mmol, 1.00 equiv) drop-wise over 30 min. Then the mixture was stirred for 3.0-24 h at rt. The mixture was then poured into a separatory funnel and washed with 3 x 10.0 mL of saturated NaHCO₃(aq) followed by washing with 15.0 mL of saturated NaCl (aq). The organic layer was then dried over anhydrous Na₂SO₄. Evaporation and column chromatography on silica gel afforded corresponding amide substrates as white or yellow solid with >80 % yield.

Preparation of 2a~2j²

Sodium borohydride (22mmol, 1.1 eq.) was added portion-wise to a solution of the corresponding carbonyl compound (20 mmol, 1eq.) in methanol (100 mL), cooled with an ice bath. Then the mixture was stirred for 1 h at rt. The mixture was then poured into a separatory funnel and washed with saturated $NH_4Cl(aq)$ followed by washing with 20.0 mL of saturated NaCl(aq). The organic layer was then dried over anhydrous Na_2SO_4 . Evaporation and column chromatography on silica gel afforded corresponding amide substrates as white or yellow solid with >80 % yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 – 7.07 (m, 10H), 5.55 (s, 1H), 2.68 (s, 1H). This compound **2a** is known.^[3]

¹**H NMR** (400 MHz, CDCl₃) δ 7.25 – 7.17 (m, 4H), 7.16 – 7.10 (m, 3H), 7.01 (d, *J* = 7.9 Hz, 2H), 5.62 (s, 1H), 2.34 (s, 1H), 2.21 (s, 3H). This compound **2b** is known.^[3]

¹**H NMR** (400 MHz, CDCl₃) δ 7.18 – 7.12 (m, 4H), 6.93 – 6.85 (m, 4H), 5.61 (s, 1H), 2.59 (s, 1H). This compound **2c** is known.^[4]

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.14 (m, 9H), 5.63 (s, 1H), 2.35 (s, 1H). This compound **2d** is known.^[3]

 1H NMR (400 MHz, CDCl₃) δ 7.23 – 7.03 (m, 9H), 5.52 (s, 1H), 2.69 (s, 1H). This compound 2e is known. $^{[5]}$

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 1H), 7.30 – 7.10 (m, 6H), 7.06 – 7.00 (m, 1H), 6.93 – 6.87 (m, 1H), 5.99 (s, 1H), 2.32 (s, 1H). This compound **2f** is known.^[3]

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.2 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.28 – 7.18 (m, 5H), 5.78 (s, 1H), 2.06 (s, 1H). This compound **2g** is known.^[3]

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 7H), 7.09 – 7.00 (m, 2H), 5.83 (s, 1H), 2.26 (s, 1H). This compound **2h** is known.^[3]

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 2H), 7.25 – 7.13 (m, 5H), 7.11 – 7.07 (m, 2H), 5.59 (s, 1H), 2.44 (s, 1H). This compound **2i** is known.^[3]

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.43 (m, 4H), 7.38 – 7.15 (m, 10H), 5.77 (s, 1H), 2.20 (s, 1H). This compound **2j** is known.^[6]

5. Dibenzylation with different acetanilide^a

^a1a~1o (0.1 mmol), 2a (0.2 mmol), AgOTf (10 mol%), DCE (1 mL), 120 °C, 8 h.

A mixture of $1a\sim10$ (0.1 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), AgOTf (2.6 mg, 10 mol%) and 1 mL DCE in a 15 mL glass vial was heated at 120 °C with vigorous stirring for 8 hours. The reaction mixture was cooled to room temperature, and filtered through celite. The filtrate was concentrated in vacuo and purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:5 to 1:1) to give product **3aa~3oa**.

White solid. Isolated yield: 33.6 mg, 72 %

¹**H** NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.2 Hz, 1H), 7.22 – 7.00 (m, 11H), 6.91 (t, J = 7.9 Hz, 10H), 6.69 (s, 1H), 6.51 (s, 1H), 5.42 (s, 1H), 5.27 (s, 1H), 1.77 (s, 3H). ¹³C NMP (101 MHz, CDCl) δ 168 37, 143 80, 141 78, 140 79, 135 71, 133 53, 131 32, 129 29, 129 23, 128 77

¹³**C NMR** (101 MHz, CDCl₃) δ 168.37, 143.80, 141.78, 140.79, 135.71, 133.53, 131.32, 129.29, 129.23, 128.77, 128.40, 128.24, 126.91, 126.23, 124.75, 56.37, 52.74, 24.02.

HRMS Calcd for C₃₄H₂₉NO [M+Na+]:490.2141; Found: 490.2131.

White solid. Isolated yield: 18.4 mg, 55 %.

¹**H NMR** (400 MHz, $CDCl_3$) δ 8.13 (d, J = 8.5 Hz, 1H), 7.51 (s, 1H), 7.19 – 7.14 (m, 4H), 7.12 – 7.07 (m, 2H), 7.01 – 6.96 (m, 5H), 6.91 (dd, J = 8.5, 1.9 Hz, 1H), 5.36 (s, 1H), 2.08 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.32, 143.08, 140.88, 132.83, 129.64, 129.31, 128.71, 128.47, 126.60, 122.87, 121.78, 56.00, 24.69.

HRMS Calcd for C₂₁H₁₈ClNO [M+Na+]: 358.0969; Found: 358.0975.

White solid. Isolated yield: 20.0 mg, 53 %.

¹**H** NMR (400 MHz, $CDCl_3$) δ 8.09 (d, J = 8.4 Hz, 1H), 7.49 (s, 1H), 7.21 – 7.13 (m, 5H), 7.13 – 7.06 (m, 2H), 7.01 – 6.92 (m, 5H), 5.36 (s, 1H), 2.07 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.27, 143.13, 141.38, 133.99, 132.84, 129.49, 129.38, 128.54, 126.68, 121.89, 113.47, 56.01, 24.91.

HRMS Calcd for C₂₁H₁₈BrNO [M+Na+]: 402.0464; Found: 402.0473.

White solid. Isolated yield: 18.0 mg, 50 %.

¹**H** NMR (400 MHz, CDCl₃) δ 10.88 (s, 1H), 8.52 (d, J = 8.7 Hz, 1H), 7.73 (d, J = 2.2 Hz, 1H), 7.20 – 7.07 (m, 7H), 6.99 (d, J = 7.3 Hz, 4H), 5.42 (s, 1H), 3.71 (s, 3H), 2.10 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.05, 168.74, 143.36, 139.99, 138.15, 135.67, 131.41, 129.36, 128.51, 126.59, 120.52, 114.93, 56.16, 52.34, 25.47.

HRMS Calcd for C₂₃H₂₁NO₃ [M+Na+]: 382.1414; Found: 382.1409.

White solid. Isolated yield: 21.8 mg, 55 %.

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, J = 12.0 Hz, 1H), 7.51 (s, 1H), 7.25 – 7.11 (m, 6H), 7.02 – 6.95 (m, 5H), 5.65 (s, 1H), 2.12 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.32, 161.14, 158.68, 141.93, 135.42 (d, $J_{C-F} = 12.2$ Hz), 133.31 (d, $J_{C-F} = 5.1$ Hz), 129.25, 128.66, 126.90, 109.21 (d, $J_{C-F} = 29.9$ Hz), 106.94 (d, $J_{C-F} = 2.3$ Hz), 49.21 (d, $J_{C-F} = 2.1$ Hz), 25.02.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.53.

HRMS Calcd for C₂₁H₁₇BrFNO [M+Na+]: 420.0370; Found: 420.0369.

White solid. Isolated yield: 20.1 mg, 60 %.

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.6 Hz, 1H), 7.29 – 7.19 (m, 6H), 7.19 – 7.11 (m, 1H), 7.01 (d, J = 7.2 Hz, 4H), 6.71 – 6.65 (m, 2H), 5.42 (s, 1H), 1.82 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.37, 141.10, 137.66, 133.98, 130.77, 129.90, 129.31, 129.10, 127.60, 127.39, 126.07, 52.69, 24.10.

HRMS Calcd for C₂₁H₁₈ClNO [M+Na+]: 358.0969; Found: 358.0975.

White solid. Isolated yield: 22.0 mg, 58 %.

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.5 Hz, 1H), 7.33 – 7.15 (m, 7H), 7.01 (d, *J* = 7.2 Hz, 4H), 6.85 (s, 1H), 6.67 (s, 1H), 5.42 (s, 1H), 1.81 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.31, 141.07, 137.78, 134.53, 132.79, 130.65, 129.33, 129.15, 127.45, 126.28, 118.67, 52.72, 24.17.

HRMS Calcd for C₂₁H₁₈BrNO [M+Na+]: 402.0464; Found: 402.0461.

White solid. Isolated yield: 20.9 mg, 43 %.

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 11.5 Hz, 1H), 7.19 – 7.03 (m, 12H), 6.93 – 6.80 (m, 8H), 6.70 (s, 1H), 6.25 (d, J = 8.2 Hz, 1H), 5.59 (s, 1H), 5.30 (s, 1H), 1.78 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.18, 160.56, 158.11, 142.48, 141.41, 134.93 (d, $J_{C-F} = 10.9$ Hz), 132.55 (d, $J_{C-F} = 4.8$ Hz), 129.81, 129.10 (d, $J_{C-F} = 3.3$ Hz), 128.98, 128.35, 127.19, 126.97 (d, $J_{C-F} = 15.0$ Hz), 126.44, 110.90 (d, $J_{C-F} = 27.4$ Hz), 52.46, 49.38, 24.30.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.89.

HRMS Calcd for C₃₄H₂₈FNO [M+Na+]: 508.2047; Found: 508.2048.

White solid. Isolated yield: 16.7 mg, 33 %.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.11 – 6.99 (m, 12H), 6.84 – 6.76 (m, 9H), 6.28 (s, 1H), 5.71 (s, 1H), 5.31 (s, 1H), 1.71 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.28, 142.35, 141.18, 137.92, 134.42, 133.64, 132.90, 129.20, 128.97, 128.84, 128.26, 127.03, 126.31, 124.88, 53.08, 52.27, 24.02.

HRMS Calcd for C₃₄H₂₈ClNO [M+Na+]: 524.1752; Found: 524.1758.

White solid. Isolated yield: 48.2 mg, 88 %

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.13 – 7.04 (m, 12H), 6.85 – 6.79 (m, 8H), 6.65 (s, 1H), 6.28 (s, 1H), 5.71 (s, 1H), 5.29 (s, 1H), 1.78 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.24, 142.52, 141.12, 139.74, 134.56, 134.22, 133.13, 129.38, 129.08, 128.98, 128.35, 128.11, 127.19, 126.40, 123.69, 55.64, 52.54, 24.20.

HRMS Calcd for C₃₄H₂₈BrNO [M+Na+]: 568.1246; Found: 568.1231.

White solid. Isolated yield: 27.0 mg, 80 %

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 11.7, 7.7 Hz, 1H), 7.21 – 7.07 (m, 7H), 6.95 – 6.93 (m, 4H), 6.50 (dd, J = 11.5, 8.8 Hz, 1H), 5.41 (s, 1H), 1.71 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.30, 149.97 (d, $J_{C-F} = 13.3$ Hz), 147.51 (d, $J_{C-F} = 13.2$ Hz), 147.32 (dd, $J_{C-F} = 12.7$, 12.8 Hz), 140.99, 132.31, 131.45 (dd, $J_{C-F} = 11.0$, 5.0 Hz), 129.22 (d, $J_{C-F} = 2.1$ Hz), 127.56, 118.45 (d, $J_{C-F} = 19.4$ Hz), 113.86 (d, $J_{C-F} = 20.9$ Hz), 52.24, 24.09.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -138.12 - -138.41 (m), -140.65 - -140.99 (m). HRMS Calcd for $C_{21}H_{17}F_2NO$ [M+Na+]: 360.1170; Found: 360.1166.

White solid. Isolated yield: 44.8 mg, 90 %

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.51 (s, 1H), 7.21 – 7.08 (m, 12H), 6.91 – 6.83 (m, 8H), 6.27 (s, 1H), 5.52 (s, 1H), 5.44 (s, 1H), 3.48 (s, 3H), 1.98 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.02, 146.09, 143.68, 143.59, 137.71, 135.25, 129.54, 129.51, 128.44, 128.42, 126.55, 126.47, 125.84, 121.96, 112.17, 55.53, 52.46, 52.29, 24.82.

HRMS Calcd for C₃₅H₃₁NO ₂[M+Na+]: 520.2247; Found: 520.2240.

White solid. Isolated yield: 32.5 mg, 90 %

¹**H** NMR (400 MHz, CDCl₃) δ 7.20 – 7.16 (m, 4H), 7.13 – 7.09 (m, 3H), 6.99 (d, *J* = 7.3 Hz, 4H), 6.89 (s, 1H), 6.24 (s, 1H), 5.47 (s, 1H), 3.69 (s, 3H), 3.47 (s, 3H), 1.77 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.56, 147.84, 146.51, 142.27, 129.37, 128.91, 128.58, 128.41, 127.08, 113.29, 109.22, 56.10, 56.03, 52.48, 24.05.

HRMS Calcd for C₂₃H₂₃NO₃ [M+Na+]:384.1570; Found:384.1557.

Yellow solid. Isolated yield: 20.0 mg, 43 %

¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.11 – 7.00 (m, 12H), 6.94 – 6.88 (m, 8H), 6.70 (s, 1H), 6.51 (s, 1H), 5.39 (s, 1H), 5.27 (s, 1H), 3.23 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 177.79, 144.07, 141.84, 139.59, 137.96, 130.10, 129.28, 129.24, 128.53, 128.28, 126.74, 126.27, 125.67, 125.51, 123.76, 56.40, 52.10, 36.40.

HRMS Calcd for C₃₄H₂₇NO [M+Na+]: 488.1985; Found: 488.1968.

6. Dibenzylation with different benzhydrol.^a

^a1c (0.1 mmol), 2b~2j (0.2 mmol), AgOTf (10 mol%), DCE (1 mL), 120 °C, 8 h.

A mixture of 1c (0.1 mmol, 1.0 equiv), 2b~2j (0.2 mmol, 2.0 equiv), AgOTf (2.6 mg, 10 mol%) and 1 mL DCE in a 15 mL glass vial was heated at 120 °C with vigorous stirring for 8 hours. The reaction mixture was cooled to room temperature, and filtered through celite. The filtrate was concentrated in vacuo and purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:5 to 1:1) to give product 3cb~3cj.

Yellow solid. Isolated yield: 27.9 mg, 71 %

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.4 Hz, 1H), 7.48 (s, 1H), 7.21 – 7.16 (m, 3H), 7.14 – 7.07 (m, 1H), 7.03 - 6.94 (m, 5H), 6.89 - 6.87 (m, 2H), 5.34 (s, 1H), 2.22 (s, 3H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.26, 143.34, 141.63, 140.15, 136.21, 133.91, 132.79, 129.42, 129.32, 129.23, 128.49, 128.43, 126.58, 121.91, 113.50, 55.64, 24.83, 21.10.

HRMS Calcd for C₂₂H₂₀BrNO [M+Na+]: 416.0620; Found: 416.0621.

White solid. Isolated yield: 25.3 mg, 61 % ¹**H** NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.48 (s, 1H), 7.15 (d, *J* = 1.5 Hz, 1H), 6.97 – 6.87 (m, 9H), 5.36 (s, 1H), 2.15 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 168.33, 161.68 (d, *J*_{C-F} = 244.0 Hz), 140.94, 138.75, 134.29, 132.67, 130.76 (dd, 3.16).

 $J_{C-F} = 7.9, 1.9 \text{ Hz}$, 129.29, 122.01, 115.49 (dd, $J_{C-F} = 21.3, 1.9 \text{ Hz}$), 113.55, 54.45, 24.90.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -88.11 – -138.99 (m).

HRMS Calcd for C₂₁H₁₆BrF₂NO [M+Na+]: 438.0276; Found: 438.0263.

Yellow solid. Isolated yield: 21.1 mg, 51 %

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.5 Hz, 1H), 7.49 (s, 1H), 7.24 – 7.10 (m, 6H), 7.00 – 6.90 (m, 5H), 5.35 (s, 1H), 2.13 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.33, 142.60, 141.71, 140.81, 134.20, 132.74, 132.50, 130.69, 129.34, 129.26, 128.66, 126.88, 122.03, 113.59, 55.32, 24.81.

HRMS Calcd for C₂₁H₁₇BrClNO [M+Na+]: 436.0074; Found: 436.0075.

Yellow solid. Isolated yield: 19.8 mg, 48 %

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.4 Hz, 1H), 7.50 (s, 1H), 7.22 – 7.12 (m, 4H), 7.10 (d, J = 5.1 Hz, 2H), 7.00 – 6.92 (m, 4H), 6.89 – 6.84 (m, 1H), 5.33 (s, 1H), 2.10 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.30, 145.24, 142.28, 140.48, 134.42, 134.25, 132.74, 129.76, 129.39, 129.34, 129.26, 128.67, 127.58, 126.94, 126.92, 122.01, 113.58, 55.61, 24.82.

HRMS Calcd for C₂₁H₁₇BrClNO [M+Na+]: 436.0074; Found: 436.0077.

Yellow solid. Isolated yield: 25.8 mg, 65 %

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.5 Hz, 1H), 7.48 (s, 1H), 7.28 – 7.10 (m, 5H), 7.05 – 6.93 (m, 5H), 6.85 – 6.81 (m, 1H), 5.67 (s, 1H), 2.13 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.31, 160.70 (d, $J_{C-F} = 247.1$ Hz), 141.87, 140.07, 134.24, 132.72, 130.79 (d, $J_{C-F} = 3.8$ Hz), 130.42 (d, $J_{C-F} = 14.3$ Hz), 129.35, 129.28, 128.66, 128.59, 124.16 (d, $J_{C-F} = 3.6$ Hz), 121.88, 115.71, 115.49, 113.48, 48.66 (d, $J_{C-F} = 3.2$ Hz), 24.92.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.24.

HRMS Calcd for C₂₁H₁₇BrFNO [M+Na+]: 420.0370; Found: 420.0368.

White solid. Isolated yield: 24.6 mg, 55 %

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.51 – 7.42 (m, 3H), 7.25 – 7.10 (m, 6H), 7.01 – 6.93 (m, 3H), 5.43 (s, 1H), 2.13 (s, 3H)

¹³C NMR (101 MHz, CDCl₃) δ 168.21, 147.18, 142.12, 140.19, 134.30, 132.69, 129.64, 129.35, 129.23, 128.94 (d, J_{C-F} = 32.5 Hz), 128.70, 127.00, 125.44 (q, J_{C-F} = 3.8 Hz), 122.79, 121.85, 113.41, 55.72, 24.84. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.42.

HRMS Calcd for C₂₂H₁₇BrF₃NO [M+Na+]: 470.0338; Found: 470.0326.

White solid. Isolated yield: 22.2 mg, 56 %

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 1H), 7.49 (s, 1H), 7.22 – 7.09 (m, 4H), 7.00 – 6.92 (m, 5H), 6.90 – 6.83 (m, 2H), 5.35 (s, 1H), 2.10 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.31, 161.55 (d, $J_{C-F} = 245.4$ Hz), 142.91, 141.16, 138.87 (d, $J_{C-F} = 3.1$ Hz), 134.11, 132.72, 130.79 (d, $J_{C-F} = 7.9$ Hz), 129.30, 129.23, 128.59, 126.78, 122.04, 115.31 (d, $J_{C-F} = 21.3$ Hz), 113.59, 55.16, 24.78.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.12.

HRMS Calcd for C₂₁H₁₇BrFNO [M+Na+]: 420.0370; Found: 420.0371.

Yellow solid. Isolated yield: 21.5 mg, 47 %

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.4 Hz, 1H), 7.50 (s, 1H), 7.33 – 7.27 (m, 2H), 7.22 – 7.10 (m, 4H), 6.98 – 6.91 (m, 3H), 6.86 (d, J = 8.4 Hz, 2H), 5.32 (s, 1H), 2.11 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.30, 142.50, 142.24, 140.68, 134.21, 132.73, 131.61, 131.08, 129.33, 129.25, 128.66, 126.89, 122.01, 120.64, 113.57, 55.37, 24.83.

HRMS Calcd for C₂₁H₁₇Br₂NO [M+Na+]: 479.9569; Found: 479.9556.

Yellow solid. Isolated yield: 19.6 mg, 43 %

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.4 Hz, 1H), 7.48 – 7.37 (m, 5H), 7.29 – 7.25 (m, 2H), 7.21 – 7.14 (m, 4H), 7.12 – 7.06 (m, 1H), 7.05 – 6.94 (m, 5H), 5.37 (s, 1H), 2.05 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.26, 142.99, 142.18, 141.28, 140.61, 139.40, 134.01, 132.78, 129.71, 129.37, 129.30, 128.77, 128.53, 127.25, 127.14, 126.98, 126.67, 122.06, 113.63, 55.62, 24.68.

HRMS Calcd for C₂₇H₂₂BrNO [M+Na+]: 478.0777; Found: 478.0755.

7. Gram-Scale Reactions.

A mixture of **1a or 1h** (10 mmol), **2a** (20 mmol, 2.0 equiv), AgOTf (260 mg, 10 mol%) and 100 mL DCE in a 500 mL glass vial was heated at 120 °C with vigorous stirring for 24 hours. The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through celite. The filtrate was concentrated in vacuo and purified by column chromatography on silica gel to give product **3aa** 4.01 g, **3ha** 2.12 g.

8. Preliminary mechanistic study

9. References

Ρh

3ja

CI

- [1] J. M. John, R. Loorthuraja, E. Antoniuk and S. H. Bergens, Catal. Sci. Technol., 2015, 5, 1181.
- [2] I. Šolić, P. Seankongsuk, J. K. Loh, T. Vilaivan, R. W. Bates, Org. Biomol. Chem., 2018, 16, 119.
- [3] J. Karthikeyan, M. Jeganmohan, and C. H. Cheng, Chem. Eur. J. 2010, 16, 8989.
- [4]V. J. Forrat, D. J. RamoRa and M. Yus, Tetrahedron: Asymmetry, 2007, 18, 400.
- [5] C. H. Xing, Q. S. Hu, Tetrahedron Letters, 2010, 51, 924.
- [6] F. Stieber, U. Grether and H. Waldmann, Chem. Eur. J. 2003, 9, 3270.

10. XRD data of the compound 3ca, 3ha, 3ja, 3la

Intensity data were collected with a Rigaku Mercury CCD area detector in ω scan mode using Mo Karadiation ($\lambda = 0.71070$ Å). The diffracted intensities were corrected for Lorentz polarization effects and empirical absorption corrections. Details of the intensity data collection and crystal data are given in Table 2. The structures were solved by direct methods and refined by fullmatrix least–squares procedures based on |F|2. All the non–hydrogen atoms were refined anisotropically. All the H atoms were held stationaryand included in the structure factor calculation in the final stage of full–matrix least–squares refinement. The structures were solved and refinedusing OLEX-2 programs.

3la

3ca (CCDC number: 1842262)

Supplementary Table 3

Empirical formula	C ₂₁ H ₁₈ BrNO
Formula weight	380.27
Temperature	120(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 9.5843(5) A alpha =77.8330(10) deg
	b = 10.5582(5) A beta = $83.4690(10)$ deg
	c = 19.2410(9) A gamma = 66.8000(10)
	deg
Volume	1748.39(15) A^3
Z, Calculated density	4, 1.445 Mg/m^3
Absorption coefficient	2.358 mm^-1
F(000)	776
Crystal size	0.400 imes 0.320 imes 0.230 mm
Thata range for data collection	2.134 to 25.344 deg.
Limiting indices	$-11 \le h \le 11, -12 \le k \le 12, -23 \le 1 \le 23$
Reflections collected / unique	40862 / 6413 [R(int) = 0.0885]
Completeness to theta $= 25.00$	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.581 and 0.421
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6413 / 0 / 433
Goodness-of-fit on F^2	1.098
Final R indices [I>2sigma(I)]	R1 = 0.0351, $wR2 = 0.0925$
R indices (all data)	R1 = 0.0544, wR2 = 0.1003

3ha (CCDC number: 1842261)

Supplementary Table 3

C21 H18 Br N O
380.27
120(2) K
0.71073 A
Monoclinic, P 21/n
a = 11.3526(6) A alpha = 90 deg.
b = 38.9014(18) A beta = 114.621(2) deg.
c = 13.5468(7) A gamma = 90 deg.
5438.8(5) A^3
12, 1.393 Mg/m^3
2.274 mm^-1
2328
0.25 imes 0.23 imes 0.20 mm

Thata range for data collection	2.24 to 25.35 deg.
Limiting indices	-13≤h≤13, -46≤k≤46, -16≤l≤16
Reflections collected / unique	124077 / 9951 [R(int) = 0.0739]
Completeness to theta $= 25.00$	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6591 and 0.6003
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9951 / 0 / 649
Goodness-of-fit on F^2	1.033
Final R indices [I>2sigma(I)]	R1 = 0.0384, wR2 = 0.0873
R indices (all data)	R1 = 0.0517, wR2 = 0.0916

3ja (CCDC number: **1842260**)

Supplementary Table 3	
Empirical formula	C34 H28 Cl N O
Formula weight	502.02
Temperature	304(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	a = 13.5024(11) A alpha = 90 deg.
	b = 9.0647(8) A beta = 97.115(2) deg.
	c = 22.691(2) A gamma = 90 deg.
Volume	2755.8(4) A^3
Z, Calculated density	4, 1.210 Mg/m^3
Absorption coefficient	0.165 mm^-1
F(000)	1056
Crystal size	0.60×0.50×0.45 mm
Thata range for data collection	2.214 to 25.347 deg.
Limiting indices	-15≤h≤16, -10≤k≤10, -27≤l≤27
Reflections collected / unique	50395 / 5020 [R(int) = 0.0469]
Completeness to theta $= 25.00$	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.928 and 0.906
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5020 / 0 / 335
Goodness-of-fit on F^2	1.090
Final R indices [I>2sigma(I)]	R1 = 0.0439, wR2 = 0.1254
R indices (all data)	R1 = 0.0693, $wR2 = 0.1448$

3ca (CCDC number: 1842259)

Supplementary Table 3

Empirical formula	C21 H17 F2 N O

Formula weight	337.36
Temperature	304(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P 21/n
Unit cell dimensions	a = 10.143(4) A alpha = 90 deg.
	b = 9.497(3) A beta = 99.453(11) deg.
	c = 19.050(7) A gamma = 90 deg.
Volume	1810.1(11) A^3
Z, Calculated density	4, 1.238 Mg/m^3
Absorption coefficient	0.090 mm^-1
F(000)	704
Crystal size	0.250 imes 0.230 imes 0.200 mm
Thata range for data collection	2.403 to 25.348 deg.
Limiting indices	$-12 \le h \le 12, -11 \le k \le 11, -22 \le l \le 22$
Reflections collected / unique	23003 / 3302 [R(int) = 0.0733]
Completeness to theta $= 25.00$	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.927 and 0.886
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3302 / 0 / 227
Goodness-of-fit on F^2	1.064
Final R indices [I>2sigma(I)]	R1 = 0.0615, wR2 = 0.1708
R indices (all data)	R1 = 0.1079, wR2 = 0.1998

11. ¹H and ¹³C NMR spectra

29 / 49

