1 Article

2 The impact of humic acid on metaldehyde adsorption onto 3 powdered activated carbon in aqueous solution[†]

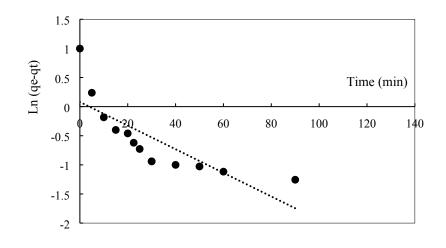
5 Journal name: RSC Advances

7 Zhuojun Li^a, Yuchen Yang^b, Ulises Jáuregui-Haza^c, Zhengxiao Guo^b, Luiza Cintra 8 Campos^{a*}

- ___

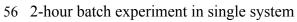
^a Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK; Emails: zhuojun.li.09@ucl.ac.uk; l.campos@ucl.ac.uk

^b Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK; Email: yu.yang.13@ucl.ac.uk; x.guo@ucl.ac.uk


^c Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Universidad de La Habana, La Habana, CP 10600, Cuba; Email: ulises.jauregui@infomed.sld.cu

^{*} Author to whom correspondence should be addressed; Email: l.campos@ucl.ac.uk (L.C.C.); Tel.: +44-207-679-4162 (L.C.C)

[†] Electronic supplementary information (ESI) available.


26 Adsorption experiment:

- 27 For single adsorption of metaldehyde, three experiments were done: 1) PAC dosage was varied
- 28 from 0.005g to 0.5 g using 500 mL of 1 mg L⁻¹ metaldehyde solution without adjusting the pH
- 29 of the solution for a 2-hour reaction time; 2) sample solutions were taken at different time
- 30 intervals between 0 minutes and 2 hours using 500 mL of 1 mg L⁻¹ metaldehyde solution and
- 31 0.05 g PAC without adjusting the pH of the solution; 3) pH of metaldehyde solution was varied
- 32 from 4 to 12 using 500 mL of metaldehyde solution and 0.05 g PAC for a 2-hour reaction time.
- 33 For single adsorption of HA, two experiments were done: 1) PAC dosage was varied from 0.05
- 34 g to 1 g using 500 mL of 30 mg L⁻¹ HA solution without adjusting the pH of the solution for
- 35 the 2-hour reaction time; 2) the sample solutions were taken at different time intervals between
- 36 0 minutes and 30 days using 500 mL of 30 mg L^{-1} HA solution without adjusting the pH of the
- 37 solution and 0.25 g PAC.
- 38 For binary adsorption of metaldehyde and HA, two experiments were done: 1) for the 500 mL
- 39 multi-component solution containing metaldehyde and HA, the concentration of HA in the
- 40 binary system was varied from 3 mg L⁻¹ to 90 mg L⁻¹ and the concentration of metaldehyde
- 41 was fixed at 1 mg L^{-1} without adjusting the pH of the solution using 0.05 g PAC for a 2-hour
- 42 reaction time; 2) sample solutions were taken at different time intervals between 0 minutes to
- 43 2 hours using 500 mL of multi-component solution containing 1 mg L⁻¹ metaldehyde and 30
- 44 mg L^{-1} HA without adjusting the pH of the solution and 0.05 g PAC.
- 45
- 46
- 47
- 48
- 49
- 50
- 20
- 51
- 52
- 53

55 Figure 1. Pseudo-first order kinetic model fitting of 1 mg L⁻¹ metaldehyde with 0.05g PAC in

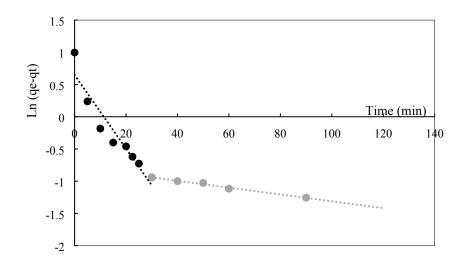
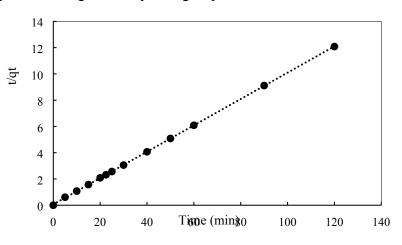
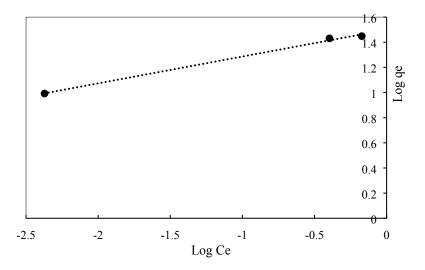
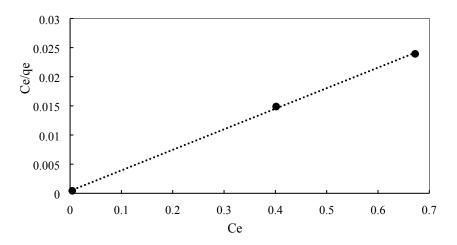
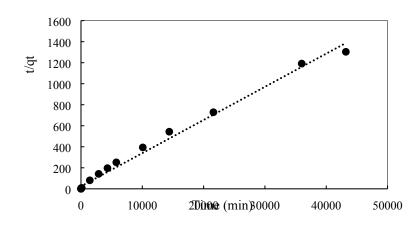
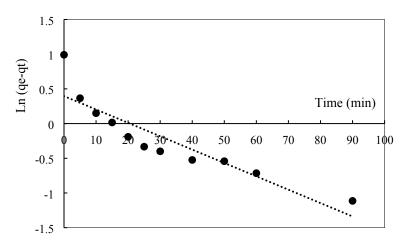



Figure 2. Two gradients plotting of pseudo-first order kinetic model

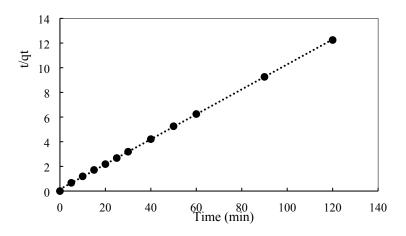
- 60 Figure 3. Pseudo-second order kinetic model fitting of 1 mg L^{-1} metaldehyde with 0.05g PAC
- 61 in 2-hour batch experiment in single system

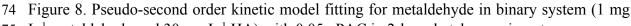




Figure 4. Freundlich isotherm fitting for single adsorption of metaldehyde


64

65


Figure 5. Langmuir isotherm fitting for single adsorption of metaldehyde


- 68 Figure 6. Pseudo-second order kinetic fitting of 30 mg L⁻¹ metaldehyde with 0.25g PAC in 2-
- 69 hour batch experiment in single system

- 71 Figure 7. Pseudo-first order kinetic model fitting for metaldehyde in binary system (1 mg L⁻¹
- 72 metaldehyde and 30 mg L^{-1} HA) with 0.05g PAC in 2-hour batch experiment

73

75 L^{-1} metaldehyde and 30 mg L^{-1} HA) with 0.05g PAC in 2-hour batch experiment

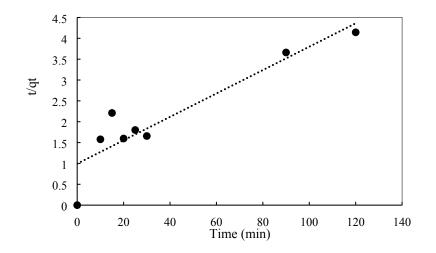


Figure 9. Pseudo-second order kinetic model fitting for HA of in binary system (1 mg L^{-1} metaldehyde and 30 mg L^{-1} HA) with 0.05g PAC in 2-hour batch experiment

79

80 Table 1. Removal of metaldehyde and HA under different experiment conditions (p values are

81 from ANOVA single-factor statistic test for analysing concentrations of solutions before and

	Percentage removal	Initial concentration	Initial concentration (mg L ⁻¹)		m vialues	
	(%)	Metaldehyde	НА	PAC dosage (g L ⁻¹)	<i>p</i> value	
	30.3 ± 6.4	1		0.01	2.28×10-7	
Removal of metaldehyde (single)	57.8 ± 2.7	1		0.02	1.07×10 ⁻⁹	
	99.6 ± 0.0	1	n/a	0.1	4.07×10 ⁻¹²	
	100.0 ± 0.0	1		0.2	8.24×10 ⁻¹⁶	
	100.0 ± 0.0	1		1	1.45×10 ⁻¹²	
Removal of HA (single)	9.8 ± 0.1		30	0.1	8.5×10 ⁻¹⁰	
	14.8 ± 0.1		30	0.2	6.96×10 ⁻¹¹	
	21.6 ± 0	n/a	30	0.5	6.72×10 ⁻¹¹	
	25.1 ± 0.1		30	1	1.39×10 ⁻¹²	
	32.0 ± 0.1		30	2	9.8×10 ⁻¹¹	
Removal of metaldehyde (binary)	98.6 ± 0.2	1	3	0.1	1.24×10 ⁻¹⁸	
	98.4 ± 0.3	1	9	0.1	8.48×10 ⁻¹⁶	
	97.8 ± 0.5	1	15	0.1	2.53×10 ⁻¹⁸	
	96.2 ± 0.5	1	30	0.1	1.37×10 ⁻¹⁸	
	89.9 ± 1.4	1	60	0.1	9.76×10 ⁻¹⁶	
	90.2 ± 1.0	1	90	0.1	1.31×10 ⁻¹⁴	
Removal of HA (binary)	20.5 ± 0.5	1	3	0.1	1.98×10 ⁻⁷	
	16.3 ± 0.4	1	9	0.1	2.71×10 ⁻⁷	
	14.8 ± 0	1	15	0.1	6.53×10 ⁻¹¹	
	11.3 ± 1.6	1	30	0.1	1.11×10 ⁻¹⁰	
	7.7 ± 0	l	60	0.1	1.34×10 ⁻¹⁰	
	6.5 ± 0	l	90	0.1	8.73×10 ⁻¹⁰	
82 after treatments)					
83						
84						
85						
86						
87						
88						
89						
90						
91						

Table 2. Comparison table of adsorption of metaldehyde and HA onto GAC and PAC

Sample solution (500 mL)	2 g/L GAC (purchased from sigma-aldrich, 20 mesh size, specific surface area = 650 m ² g ⁻¹) Removal (%)		0.1 g/L PAC (used in this study, specific surface area = 962 m ² g ⁻¹) Removal (%)		0.2 g/L PAC (used in this study, specific surface area = 962 m ² g ⁻¹) Removal (%)	
	Metaldehyde	НА	Metaldehyde	HA	Metaldehyde	НА
Mono-component	99.70±0.15		99.6		100	
solution of metaldehyde						
(1 mg L ⁻¹)						
Multi-component	98.99±0.58	21.56	96.2±0.5	11.3 ±		
solution of				1.6		
metaldehyde (1 mg L ⁻¹)	$k_2 = 0.016 \text{ g}$		$k_2 = 0.069 \text{ g}$			
and HA (30 mg L ⁻¹)	mg ⁻¹ min ⁻¹		mg ⁻¹ min ⁻¹			
Mono-component		22.67		9.8±		14.8 ±
solution of HA (30 mg L ⁻¹)				0.1		0.1