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1. PXRD spectra

Figure S1 PXRD spectra of HCOPs.

Figure S2 PXRD spectra of HCOPs after soaking in concentrated HCl for 3 days.
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2. FT-IR spectra

Figure S3 FT-IR spectra of BTCH monomer and HCOPs.

Figure S4 FT-IR spectra of BDC (or BPDC) monomers and HCOP-4.
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3. TGA curves

Figure S5 TGA curves of HCOPs.
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4. N2 adsorption isotherms and pore size distribution

Figure S6 Nitrogen adsorption and desorption isotherms of HCOPs measured at 77 K.

Figure S7 Pore size distributions of HCOPs.
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Table S1 Adsorption characteristics of HCOPs.

HCOPs
BET

(m2 g−1)
Langmuir
 (m2 g−1)

Pore volume
 (cm3 g−1)

HCOP-1 13 20 0.04

HCOP-2 18 28 0.04

HCOP-3 41 65 0.12

HCOP-4 43 68 0.14
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5. Zeta potential curves

Figure S8 Zeta potential curves versus pH of the HCOPs.
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6. Adsorption experiments

  Equations 1, 2 and 3 were used to calculate the removal efficiency (E, %), the 

adsorption amount of fluoroquinolones by HCOPs at desired time t (qt, mg g–1) and the 

adsorption capacity of fluoroquinolones by HCOPs at equilibrium (qe, mg g–1), 

respectively:[1]

                                                                  (1)

                                                                  (2)

                                                                 

                                                                  (3)

                                                                 

where C0 (mg L–1) and Ce (mg L–1) are the initial concentrations of fluoroquinolones 

and the equilibrium concentrations of fluoroquinolones, respectively; m (g) is the 

mass of adsorbent used; V (L) is the total volume of solution used. 
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6.1 Calibration plots of standard ciprofloxacin and norfloxacin

  A serious of fluoroquinolone solutions with different concentrations at a range of 

pH values from 2.0 to 10.0 were prepared as standards. The calibrated plots all 

exhibited a good correlation coefficient.

   

Figure S9 The standard curves of the ciprofloxacin and norfloxacin.
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6.2 Adsorption kinetic

  The adsorption kinetic were studied using experiments with different contacting 

time at initial fluoroquinolone concentration of 10 mg/L at pH = 6.0. Pseudo-first-

order kinetic, pseudo-second-order kinetic models and intraparticle diffusion model 

are described as the following functions:[2–4]

                                                                  (4)

                                                                 

                                                                  (5)  

                          

                                                                  (6)

where qt (mg g–1) and qe (mg g–1) represent the same as above; k1 (h–1) and k2 (g mg–1 

h–1) are the pseudo-first-order and the pseudo-second-order rate constants, 

respectively. ki (mg g−1 h−1/2) is the diffusion rate constant and C (mg g−1) is the 

intercept which are proportional to the extent of boundary layer thickness.
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Figure S10 (a) and (b) Pseudo-first-order curve-fittings for fluoroquinolones 

adsorption onto HCOPs; (c) and (d) Pseudo-second-order curve-fittings for 

fluoroquinolones adsorption onto HCOPs; (e) and (f)  Intraparticle diffusion models 

for fluoroquinolones adsorption onto HCOPs.
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6.3 Adsorption isotherms analysis

  The Langmuir sorption isotherm is often applied for the monolayer adsorption 

process, while the well-known Freundlich isotherm is based on sorption on 

heterogeneous surface with multilayer adsorption. The Langmuir isotherm and 

Freundlich isotherm models can be represented as following equations:[5–6]     

                                                                  

                                                                  (7)

                                                                  (8)

where qe (mg L–1) is the adsorption capacity at equilibrium status, Ce (mg L–1) is the 

concentration of fluoroquinolones in solution at equilibrium status, and b (L mg–1) is 

the Langmuir constant. In addition, the qm is the maximum adsorption capacity of the 

adsorbent. KF (L g–1) is the Freundlich constant concerned with the adsorption 

capacity and 1/n corresponds to the heterogeneity factor.

Figure S11 (a) and (b) Langmuir linear fittings for the fluoroquinolones adsorption 

onto HCOPs; (c) and (d) Freundlich linear fittings for the fluoroquinolones adsorption 

onto HCOPs .
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7. Tables

Table S2 Removal efficiencies and kinetic parameters for the adsorption of 

ciprofloxacin onto HCOPs.

Pseudo-first-order 
kinetics

Pseudo-second-order
kinetics

HCOPs

Removal 
Efficiency 

(%)

qe,exp

(mg·g–1) k1

(h–1)
qe,cal

(mg·g–1)
R2

k2

(g·mg-1·h–1)
qe,cal

(mg·g–1)
R2

HCOP-1 57.3% 5.73 0.78 6.30 0.96 0.13 5.97 0.99

HCOP-2 58.3% 5.83 0.75 6.55 0.98 0.14 6.21 0.99

HCOP-3 67.2% 6.72 0.64 6.59 0.98 0.18 6.80 0.99

HCOP-4 76.3% 7.63 0.54 6.89 0.98 0.19 7.84 0.99

Table S3 Intraparticle diffusion model parameters for the adsorption of ciprofloxacin 

onto HCOPs.

Intraparticle diffusion model

HCOPs
ki,1

(mg·g–1·h–

1/2)

C1

(mg·g–1)
R2

ki,2

(mg·g–1·h–

1/2)

C2

(mg·g–1)
R2

HCOP-1 1.83 1.15 0.94 0.11 5.13 0.95

HCOP-2 1.80 1.35 0.88 0.14 5.13 0.94

HCOP-3 2.32 1.29 0.89 0.07 6.40 0.89

HCOP-4 2.17 1.90 0.95 0.15 6.77 0.72



S14

Table S4 Removal efficiencies and kinetic parameters for the adsorption of 

norfloxacin onto HCOPs.

Pseudo-first-order 
kinetics

Pseudo-second-order
kinetics

HCOPs

Removal 
Efficiency 

(%)

qe,exp

(mg·g–1) k1

(h–1)
qe,cal

(mg·g–1)
R2

k2

(g·mg–1·h–1)
qe,cal

(mg·g–1)
R2

HCOP-1 58.6% 5.86 0.45 5.03 0.96 0.08 6.35 0.99

HCOP-2 60.6% 6.06 0.49 7.32 0.98 0.09 6.66 0.99

HCOP-3 69.2% 6.92 0.61 8.01 0.98 0.12 7.82 0.99

HCOP-4 76.7% 7.67 0.69 11.35 0.98 0.18 8.87 0.99

Table S5 Intraparticle diffusion model parameters for the norfloxacin of ciprofloxacin 

onto HCOPs.

Intraparticle diffusion model

HCOPs
ki,1

(mg·g–1·h–

1/2)

C1

(mg·g–1)
R2

ki,2

(mg·g–1·h–

1/2)

C2

(mg·g–1)
R2

HCOP-1 3.21 2.00 0.91 0.18 4.90 0.97

HCOP-2 3.33 2.06 0.93 0.19 5.12 0.97

HCOP-3 3.15 1.10 0.89 0.16 6.60 0.98

HCOP-4 4.45 1.32 0.85 0.07 8.30 0.74
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Table S6 Adsorption parameters of Langmuir adsorption isotherm model for the 

adsorption of ciprofloxacin onto HCOPs.

Langmuir
isotherm

HCOPs qm KL R2

HCOP-1 6.13 3.44 0.99

HCOP-2 6.29 3.46 0.99

HCOP-3 7.46 5.76 0.99
L

HCOP-4 8.47 4.60 0.99

Table S7 Adsorption parameters of Freundlich adsorption isotherm model for the 

adsorption of ciprofloxacin onto HCOPs.

Freundlich
isotherm

HCOPs n KF R2

HCOP-1 4.67 3.96 0.85

HCOP-2 4.77 4.09 0.88

HCOP-3 5.02 5.26 0.84
F

HCOP-4 4.78 5.78 0.91
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Table S8 Adsorption parameters of Langmuir adsorption isotherm model for the 

adsorption of norfloxacin onto HCOPs.

Langmuir
isotherm

HCOPs qm KL R2

HCOP-1 6.89 4.44 0.99

HCOP-2 7.44 2.62 0.99

HCOP-3 9.22 4.62 0.99
L

HCOP-4 9.67 6.55 0.99

Table S9 Adsorption parameters of Freundlich adsorption isotherm model for the 

adsorption of norfloxacin onto HCOPs.

Freundlich
isotherm

HCOPs n KF R2

HCOP-1 5.48 4.83 0.72

HCOP-2 5.97 5.06 0.88

HCOP-3 4.32 6.33 0.82
F

HCOP-4 4.55 6.77 0.75
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Table S10 Comparison of the maximum adsorption capacity of fluoroquinolones on 

different adsorbents.

S.N. Adsorbents Pollutants Adsorption capacity 
(mg g−1)

T
(K)

Reference

1

2

3

4

5

6

Modified coal fly ash

Kaolinite

Kaolinite

MCM-41

C16-MCM-41

HcOP-1

CIP

CIP

CIP

NOR 

NOR

CIP / NOR

1.55

3.26

7.95            

1.74

1.52

6.13 / 6.89

313

295

308

298

298

298

7

7

8

9

9

This work

7

8

9

HcOP-2

HcOP-3

HcOP-4

CIP / NOR

CIP / NOR

CIP / NOR

6.29 / 7.44

7.46 / 9.22

8.47 / 9.67

298

298

298

This work

This work

This work
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8. SEM spectra of the HCOPs after fluoroquinolones adsorption 

Figure S12 SEM images of (a) CIP@HCOP-1, (b) NOR@HCOP-1, (c) CIP@HCOP-2, 

(d) NOR@HCOP-2, (e) CIP@HCOP-3, (f) NOR@HCOP-3, (g) CIP@HCOP-4 and (h) 
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NOR@HCOP-4.

9. FT-IR spectra of the HCOPs after fluoroquinolones adsorption 

Figure S13 FT-IR spectra of CIP, NOR, HCOP-1, CIP@HCOP-1 and NOR@HCOP-1.
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Figure S14 FT-IR spectra of CIP, NOR, HCOP-2, CIP@HCOP-2 and NOR@HCOP-2.

Figure S15 FT-IR spectra of CIP, NOR, HCOP-3, CIP@HCOP-3 and NOR@HCOP-3.

Figure S16 FT-IR spectra of CIP, NOR, HCOP-4, CIP@HCOP-4 and NOR@HCOP-4.
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