SUPPLEMENTARY INFORMATION

List	Caption
S.I. Table 1	Physical properties of peptides and their CuP.
S.I. Table 2	The secondary structures of peptides and their CuP analyzed at
different temperatures.	
S.I Table 3	UV and FTIR spectral analysis of peptides and their CuP.
S.I Table 4	Raw data of HPLC analysis of aldol adducts for Reaction 1 and 2.
S.I Scheme 1	SPPS Scheme of P1.
	CD spectra of P1-P3 and their copper(II)-peptides
S.I. Figure 1	analyzed at room temperature $\left(25^{\circ} \mathrm{C}\right)$ indicating the
Secondary structures opted by their highest percentage as	
S.I Figure 2	shown in S.I. Table 2.
S.I. Figure 3	FTIR analysis of P1-P3 and CuP1-CuP3.
S.I. Figure 4	FTIR analysis of P4, CuP4, P5 and CuP5.
S.I. Figure 5	UV-Vis spectrum of P1-P5.
S.I. Figure 6	LC-MS of peptides P1-P5.
	HPLC chromatograms of aldol reaction between $p-$

S.I. Table 1 Physical properties of their peptides and copper(II)-peptides listing the yield and purity in terms of percentage, melting/decomposing point and their chiral optical rotation value at room temperature $\left(25^{\circ} \mathrm{C}\right)$.

$\mathbf{P} / \mathbf{C u P}$	\% Yield	\% Purity	Melting point $/{ }^{\circ} \mathbf{C}$	$\boldsymbol{\alpha}[\mathbf{D}]^{25^{\circ} \mathbf{C}}$
$\mathbf{P 1}$	74.0	80.0	$191.0(\mathrm{~m})$	-12
$\mathbf{C u P 1}$	65.0		$205.2(\mathrm{~d})$	214
P2	74.2	84.0	$210.0(\mathrm{~m})$	-14
$\mathbf{C u P 2}$	56.0		$220.6(\mathrm{~d})$	85
P3	83.1	73.0	$200.0(\mathrm{~m})$	1
$\mathbf{C u P 3}$	53.3		$208.5(\mathrm{~d})$	93
P4	70.0	99.5	$162.4(\mathrm{~m})$	-10
CuP4	48.1		$245.0(\mathrm{~d})$	227
P5	65.6	99.2	$130.0(\mathrm{~m})$	-4
CuP5	49.6		$210.6(\mathrm{~d})$	460

m-melted d-decomposed
S.I. Table 2 The secondary structures of peptides and their CuP analyzed at different temperatures

Peptides	Secondary structures		
	$4^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
P1	β-sheet (53.2\%)	β-sheet (52.2\%)	β-sheet (38.3\%)
CuP1	Random (67.2\%)	Random (67.6\%)	Random (71.5\%)
P2	Random (62.8\%)	β-sheet (82.9\%)	β-sheet (82.9\%)
CuP2	Random (58.6\%)	Random (68.7\%)	Random (70.7\%)
P3	Random (50.7\%)	Random (47.5\%)	Random (53.2\%)
CuP3	β-turn (57.2\%)	Random (42.4\%)	Random (81.4\%)
P4	β-sheet (40.9\%)	β-sheet (38.1\%)	β-sheet (75.8\%)
CuP4	β-sheet (49.6\%)	α-helix (39.5\%)	β-sheet (96.3\%)
P5	β-sheet (80.1\%)	β-sheet (40.2\%)	β-sheet (80.3\%)
CuP5	β-sheet (53.4\%)	Random (38.3\%)	β-turn (43.9\%)

S.I Table 3 UV spectral analysis of P1-P5 and copper bound to P1-P5 in compliment with the FTIR spectral analysis with the peak assignments

S.I. Table 4 HPLC CHIRALCAK column analysis of aldol enantiomers from Reaction 1 and Reaction 2 with different catalysts

Catalyst	(S)-2-[(R)-hydroxy(4nitrophenyl)methyl] cyclohexan-1-one				(S)-2-[(R)-hydroxy(4methoxyphenyl)methyl] cyclohexan-1-one			
	$\mathrm{R}_{\mathrm{T}} \mathrm{A} /$ min	$\mathrm{R}_{\mathrm{T}} \mathrm{B} / \mathrm{min}$	$\begin{gathered} \hline \% \text { Area } \\ \text { A } \end{gathered}$	$\begin{gathered} \hline \% \text { Area } \\ \text { B } \\ \hline \end{gathered}$	$\mathrm{R}_{\mathrm{T}} \mathrm{A} / \mathrm{min}$	$\mathrm{R}_{\mathrm{T}} \mathrm{B} / \mathrm{min}$	$\begin{gathered} \% \text { Area } \\ \text { A } \end{gathered}$	$\begin{gathered} \% \text { Area } \\ \text { B } \end{gathered}$
$\begin{gathered} \text { No } \\ \text { catalyst }{ }^{\text {a }} \end{gathered}$	10.2	-	97.1	-	7.50	${ }^{-}$	1.24	-
Proline ${ }^{\text {b }}$	10.3	14.9	86.6	13.4	7.50	10.4	62.0	0.190
P1	10.9	15.3	3.30	2.10	7.50	-	13.7	-
CuP1	10.8	14.5	35.2	2.40	7.46	10.2	85.9	1.98
P2	10.6	14.7	10.6	16.9	7.50	-	3.41	-
CuP2	10.5	14.5	80.5	4.80	7.50	10.2	7.03	1.33
P3	10.7	14.6	68.2	1.98	7.50	10.2	11.1	0.140
CuP3	10.6	14.4	18.5	2.03	7.50	10.2	9.14	0.430
P4	10.7	14.4	75.2	0.750	7.49	10.2	32.9	0.260
CuP4	10.5	-	96.0	-	7.50	-	1.60	-
P5	No pr	oduct peak	at 10-15	mins	7.49	10.3	87.2	0.420
CuP5	10.7	-	16.08	-	7.49	10.3	17.0	0.490

\%ee= [(Peak Area A (R) - Peak Area B (S))/(Peak Area A (R) + Peak Area B (S))]*100

(a)
(Fmoc)HN-Asp(OtBu)-CO
Wash with DMF 20% Piperidine in DMF Wash with DMF $\xrightarrow[\text { HCTU in DMF }]{\text { (Fmoc) } \mathrm{HN}-\mathrm{Ala}-\mathrm{COOH}}$ 2M DIEA in NMP

(FMoc)-NH-Ala-CO-NH-Asp(OtBu)-CO-
Wash with DMF
20\% Piperidine in DMF Wash with DMF (Fmoc)HN-His(Trt)-COOH
HCTU in DMF 2M DIEA in NMP
(b) (FMoc)-NH-Ala-CO-NH-Ala-CO-NH-Asp(OtBu)-CO

Wash with DMF\&MeOH
92.5\%TFA, 2.5% TIS
2.5\%DI water, 2.5\%EDT
(FMoc)NH-His(Trt)- CONH-Ala-CONH-Ala-CONH-Asp(OtBu)-CO
Diethyl ether and centrifuged
(Fmoc)NHHis-Ala-Ala-Asp-CONH $2+$ Rink Amide Resin
Peptide dissolved in deionized water and freeze dried
P1 - HAAD Solid white powder (Fmoc)-NHHis-Ala-Ala-Asp-CONH 2
(c)
S.I. Scheme 1 SPPS scheme of P1; (a) Fmoc deprotection of rink amide resin and coupling of $1^{\text {st }}$ amino acid from C-terminal; (b) Fmoc deprotection of $1^{\text {st }}$ amino acid and coupling of $2^{\text {nd }}$ and $3^{\text {rd }}$ amino acid; (c) Fmoc deprotection of $2^{\text {nd }}$ and $3^{\text {rd }}$ amino acid and coupling of final $\left(4^{\text {th }}\right)$ amino acid; (d) Cleaving peptide from resin using cleavage cocktail mixture.

S.I. Figure 1 CD spectra of (a) P1 \& CuP1 ($5 \mathrm{mM}, 400 \mu \mathrm{~L}$), (b) P2 \& CuP2 (5 mM , $400 \mu \mathrm{~L}$) and (c) P3 \& CuP3 ($5 \mathrm{mM}, 400 \mu \mathrm{~L}$) analyzed at room temperature $\left(25^{\circ} \mathrm{C}\right)$, their secondary structures opted by their highest percentage as shown in S.I. Table 2.

S.I. Figure 2 FTIR analysis of the P1-P3 and CuP1-CuP3. The dotted lines represent the peptides while the solid lines of the same colour represent the respective copper(II)peptides; black: P1, red: P2 and green: P3. Most of the major peaks as assigned in the graph were shifted to the right for copper-peptides as compared to their parent peptides (in the range of 2000-500 cm^{-1}). The amide peaks (terminal end) of copper(II) peptides were shifted to the left when compared to their peptides $\left(3400-3200 \mathrm{~cm}^{-1}\right)$.

S.I. Figure 3 FTIR analysis of P4, CuP4, P5 and CuP5. The dotted lines represent the peptides while the solid lines of the same colour represent the respective copper(II)peptides; blue: P4 and pink: P5.

S.I. Figure 4 UV-Vis spectrum of P1-P5. 0.1M of P1-P3 are denoted by black, red and blue dotted lines, respectively, where as 0.01 M of P 4 and P 5 are denoted by green and pink dotted lines, respectively. The transitions that include $n-\pi^{*}$ and $\pi-\pi^{*}$ (peptides) appear around $270-330 \mathrm{~nm}$ and 200-270 nm respectively. These transitions occur due to the presence of double bonds, cyclised rings and aromatic rings of the amino acids and amide bonds [21]. Hence they appear as several peaks clustered together as observed in the spectra of peptides.
(a)

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
HAAD Fmoc	634.26397	4.969	Find by Molecular Feature	633.25686

(b)

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
HAFD w Fmoc	710.29541	5.754	Find by Molecular Feature	709.28869

(c)

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
HAVD Fmoc	662.29536	5.259	Find by Molecular Feature	661.28848

(d)

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
AGHD w/o Fmoc	398.4032	7.242	Find by Molecular Feature	397.1503

(e)

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
PGHD wo Fmoc	424.42	7.690	Find by Molecular Feature	423.2513

S.I. Figure 5 LC-MS of peptides P1-P5.

S.I. Figure 6 HPLC chromatograms of aldol reaction between p-nitrobenzaldehyde \& cyclohexanone with catalysts (a) Proline (b) CuP4 (c) No catalyst.

