Supporting Information for

Effect of Double Mutations T790M/L858R on Conformation and Drug-Resistant Mechanism of Epidermal Growth Factor Receptor Explored by Molecular Dynamics Simulations

Fangfang Yan^a, Xinguo Liu^{a,*}, Shaolong Zhang^a, Jing Su^a, Qinggang Zhang^a and Jianzhong Chen^{b,*}

^aSchool of Physics and Electronics, Shandong Normal University, Jinan, 250358, China;

^bSchool of Science, Shandong Jiaotong University, Jinan, 250357, China

E-mail: liuxinguo@sdnu.edu.cn (X. Liu); chenjianzhong1970@163.com and jzchen@sdjtu.edu.cn (J. Chen).

		TAK-285			W2P			HKI-272		
		ΔE_{vdw}	ΔE_{ele}	$\Delta G_{ele + pol}$	ΔE_{vdw}	ΔE_{ele}	$\Delta G_{ele + pol}$	ΔE_{vdw}	ΔE_{ele}	$\Delta G_{ele + pol}$
L718	WT	-1.31	-0.45	1.00	-2.61	-0.46	0.80	-1.88	-0.43	0.20
	T790M/L858R	-1.72	-0.26	0.83	-1.55	-0.40	0.98	-1.84	-0.32	0.18
V726	WT	-2.15	-0.33	0.29	-1.79	-0.47	0.21	-1.03	-0.37	0.16
	T790M/L858R	-1.56	-0.17	0.37	-1.67	-0.13	0.17	-1.49	-0.57	0.34
M766	WT	-1.03	-0.37	0.07				-1.19	-0.63	-0.18
	T790M/L858R	-0.65	-0.08	0.19				-0.68	-0.05	0.16
L777	WT	-1.22	-0.26	0.09						
	T790M/L858R	-0.30	0.01	0.10						
L788	WT	-1.89	-0.06	0.42	-1.41	-0.31	0.32	-1.75	-0.10	0.19
	T790M/L858R	-1.82	0.32	0.41	-1.73	-0.00	0.59	-1.12	-0.21	0.08
M790	WT	-1.79	0.08	0.43	-1.50	0.01	0.54	-1.39	-0.36	0.34
	T790M/L858R	-2.12	0.04	0.50	-2.24	0.21	0.72	-1.96	-0.25	0.36
M793	WT	-1.25	-2.12	-0.10	-1.24	-2.03	0.19	-1.47	-3.00	0.06
	T790M/L858R	-0.94	-2.08	-0.03	-0.92	-1.87	0.21	-1.75	-2.05	0.43
G796	WT							-1.43	0.24	0.30
	T790M/L858R							-1.26	0.19	0.33
C797	WT				-1.29	-2.06	-0.34	-0.92	-1.08	0
	T790M/L858R				-0.92	-0.62	1.13	-1.06	-0.77	0.16
L844	WT	-2.51	-0.19	0.22	-2.15	0.44	0.19	-2.07	0.47	0.19
	T790M/L858R	-1.75	-0.08	0.14	-1.06	0.48	0.12	-1.56	0.62	0.28

Table S1 Energy contributions of individual residues to binging free energy of inhibitors to the WT and T790M/L858R EGFRs^a

^a All values are given in kcal/mol.

 $\Delta^{E_{vdw:}}$ van der Waals interaction energy.

 $\Delta^{E_{ele}}$: electrostatic interaction energy.

 $\Delta G_{ele + pol} = \Delta E_{ele} + \Delta G_{pol}.$

Fig. S1 Root-mean square displacements (RMSDs) of backbone atoms relative to their initial structures as function of simulated time. The WT and T790M/L858R apo state of EGFR (A) and EGFRs associated with TAK-285 (B), W2P (C) and HKI-272 (D).

Fig. S2 A1 and A2 respectively represent the free energy landscapes of the WT/mutated apo EGFRs constructed by projecting MD trajectories on the first two principal components PC1 and PC2.

Fig. S3 Geometric positions of inhibitor W2P relative to the key residues in the WT and mutated EGFRs and the hydrogen bonds are shown in the red line: (A/B) the WT/double mutant EGFRs associated with W2P. (C)-(G) depict the frequency distribution of distances between W2P and the key residues.

Fig. S4 Geometric positions of inhibitor HKI-272 relative to the key residues in the WT and T790M/L858R EGFRs and the hydrogen bonds are shown in the red line: (A/B) the WT/double mutant EGFRs associated with HKI-272. (C)-(G) display the frequency distribution of distances between HKI-272 and the key residues.