Supplementary Information

Formation of nickel-cobalt sulphide@graphene composites with enhanced electrochemical capacitive properties

Junjie Qiu, Zhongxiong Bai, Shucheng Liu, Yi Liu*

(School of Physical Sciences, Guizhou University, Guiyang 550025, China)

Current	Specific capacitance	Energy density	Power density
density (A g ⁻¹)	(F g ⁻¹)	$(W h Kg^{-1})$	(W Kg ⁻¹)
1	217.8	51.0	650.3
2	205.0	48.1	1340.5
3	190.5	44.7	1945.4
4	178.9	41.9	2610.8
5	168.2	39.4	3270.2
6	152.5	35.7	3956
7	139.8	32.8	4598
8	120.2	28.2	5235
9	109.7	25.7	5850
10	101.6	23.9	6521
11	90.6	21.1	7099
12	84.0	19.7	7800
13	76.0	17.8	8450
14	70.0	16.4	9100
15	65.7	15.4	9750
16	61.5	14.4	10393
17	57.5	13.5	11050
18	54.3	12.7	11700

Table S1. electrochemical performance parameters for Ni-Co-S@G//AC supercapacitor

^{*} Corresponding author. E-mail address: yliu9@gzu.edu.cn (Yi Liu)

		supercapacit	// 5			
materials	Specific	Capacitance	Energy	Power	electrolyte	reference
	(conditions)	(circles)	$(Wh kg^{-1})$	$(W \text{ kg}^{-1})$		
NiCo ₂ S ₄ @Graphene	1432.5	83.4%	43.4	254.3	2M KOH	1
111C0254@Oraphene	(1 A g ⁻¹)	(5000)			_	
Ni-Co sulfide	1176	78.5%	25	447	1M KOH	2
nanowires	(30 mA cm^{-2})	(3000)				
NiCo ₂ S ₄ @MnO ₂	1337.8	82%	None	None	6M KOH	3
	(2 A g ⁻¹)	(2000)				
Carbon@NiCo ₂ S ₄	1455	83%	None	None	6M KOH	4
	(1 A g ⁻¹)	(2000)				
$NiCo_2S_4$ ball in ball	1036	87%	42.3	476	6M KOH	5
spheres	(1 A g ⁻¹)	(2000)				
Onion-like NiCo ₂ S ₄	1016	87%	42.7	1583	6M KOH	6
particles	(2 A g ⁻¹)	(10000)				
NiCo ₂ S ₄	1154	92.8	17.3	200	2M KOH	7
nanostructured	(1 A g^{-1})	(8000)				
allays NiCo S. nanosheets/	1231	00.4%	15 5	512	6М КОН	8
carbon foams	$(2 \land a^{-1})$	(2000)	чэ.5	512		0
Porous Ni ₁ (Co ₁ (S)	(2 A g) 1093	108%	37.6	775	6МКОН	9
101003101.5001.504	$(1 \text{ A } \text{g}^{-1})$	(2000)	57.0	115	owncom)
Mesonorous	1440	(2000) 91.7%	28.3	245	2М КОН	10
NiCo ₂ S ₄	(3 A g^{-1})	(5000)	20.5	245	2101 1011	10
nanoparticles	(3118)	(5000)				
NiCo ₂ S ₄ urchin-like	1149	91.4%	None	None	6М КОН	11
nanostructures	(1 A g ⁻¹)	(5000)	rtone	1 (one	0101 11011	
NiCo ₂ S ₄ hollow	1263	87%	None	None	1M KOH	12
spheres	(2 Ag^{-1})	(20000)				
Co _{1 5} Ni _{1 5} S ₄	1321.9	88.8%	32.4	103.4	2M KOH	13
dendrite/quasi spherical	(1 A g^{-1})	(2000)				
Ni-Co-S/graphene	1492	None	43.3	800	6M KOH	14
The construction	(1 A g ⁻¹)					
Ni-Co-S/NF	1406.9	88.6%	24.8	849.5	1M KOH	15
	(0.5 A g^{-1})	(1000)				
CNTs@Ni-Co-S	222 mAh g ⁻¹	90.6%	46.5	800	6M KOH	16
nanosheets	(4 A g ⁻¹)	(2000)				
Ni-Co-S	1377.5	93.7%	36.9	1066.42	3M KOH	17
	(1 A g ⁻¹)	(3000)		·	_ `	
NiCo ₂ S ₄ nanosheet	1490.3	93.2%	35.17	555.6	2M KOH	18

 Table S2. Performance comparison of Ni-Co-S based electrode materials for

 supercapacitors

	(30 mA cm^{-2})	(5000)				
NiCo ₂ S ₄ nano-petals	2036.5	94.3%	35.6	819.5	1 M KOH	19
	(1 A g ⁻¹)	(5000)				
$NiCo_2S_4$ nanotube	14.39 F cm ⁻²	92%	16.6	2348.5	6 M KOH	20
	(5 mA cm^{-2})	(5000)				
Core-shell NiCo ₂ S ₄	1948	94%	10.6	2470	6 M KOH	21
	(1 A g^{-1})	(5000)				
Hollow NiCo ₂ S ₄	1279	92%	21	4725	6 M KOH	22
nanotube	(1 A g^{-1})	(2000)				
NiCo ₂ S ₄ nanosheets	744	93.4 %	10.8	8000	3 M KOH	23
	(1 A g ⁻¹)	(1500)				
Ni-Co-S@graphene	1463	87.4%	51.0	650.3	6M KOH	This
	(1 A g ⁻¹)	(1000)				work

References

1. F. Yu, Z. Chang, X. H. Yuan, F. X. Wang, Y. S. Zhu, L. j. Fu, Y. H. Chen, H. X. Wang, Y. P. Wu and W.S.Li, *J. Mater .Chem .A*, 2018, **2**, 1039.

Y. Li, L. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao and Y. Zhang. J. Mater. Chem.
 A, 2014, 2, 6540.

3. J. Yang, M. Ma, C. Sun, Y. Zhang, W. Huang and X. Dong, *J.Mater. Chem. A*, 2015, **3**, 1258.

4. L. Q. Li, Z. Y. Dai, Y. F. Zhang, J. Yang, W. Huang and X. C. Dong, *RSC Adv.*, **2015**, 5,83408.

5. L. Shen, L. Yu, H. B. Wu, X. Y. Yu, X. Zhang and X. W. Lou, *Nat. Commun.*, 2015, **6**, 6694.

6. B. Y. Guan, L.Yu, X. Wang, S. Y. Song and X. W(David). Lou. Adv. Mater. ,2017,2,1605051.

X. H. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang and M. Liu. *Nano Energy*, 2015, 16, 71.

 L. F. Shen, J. Wang, G. Y. Xu, H. S.Li, H. Dou and X. Zhang, *Adv. Energy Mater.*, 2015, 5, 1400977.

H. Chen, J. Jiang, Y. Zhao, L. Zhang, D. Guo and D. Xia, *J. Mater. Chem. A*, 2015,
 3, 428.

- 10. Y. R. Zhu, Z. B. Wu, M. J. Jing, X. M. Yang, W. X. Song and X. B. Ji, *J. Power Sources.*, 2015, **273**, 584.
- 11. H. C. Chen, J. J. Jiang, L. Zhang, H. Z. Wan, T. Qia and D. D. Xia, *Nanoscale*, 2013,5, 8879.

12. C. Xia and H. N. Alshareef, Chem. Mater., 2015, 27, 4661.

- 13. Y. Tang, T. Chen, S. Yu, Y. Qiao, S. Mu, S. Zhang, Y. Zhao, L. Hou, W. Huang and F. Gao, *J.Power Sources*, 2015, **295**, 314.
- 14. J. Yang, C. Yu, X. Fan, S. Liang, S. Li, H. Huang, Z. Ling, C. Hao and J. Qiu, *Energy Environ.Sci.*, 2016, **9**, 1299.
- 15. K. Tao, X. Han, Q. X. Ma and L. Han, Dalton Trans., 2018, 47,3496.
- 16. T. Q. Peng, H. Yi, P. Sun, Y.T. Jing, R. J. Wang, H. W. Wang and X. F. Wang, J. Mater. Chem. A, 2016, 4, 8888.
- 17. C. Chen, M. K. Wu, K. Tao, J. J. Zhou, Y. L. Li, X. Han and L. Han, *Dalton Trans.*, 2018, **47**, 5639.
- 18. L.Y. Lin, J. L. Liu, T. M. Liu, J. H. Hao, K. M. Ji, R. Sun, W. Zeng and Z. C. Wang, *J. Mater. Chem. A*, 2015, **3**, 17652.
- 19. Y. X. Wen, S. L. Peng, Z. L. Wang, J. X. Hao, T. F. Qin, S.Q. Lu, J.C. Zhang, D. Y.
- He, X. Y. Fan and G. Z. Cao, J. Mater. Chem. A, 2017, 5,7144.
- H. C. Chen, J. J. Jiang, L. Zhang, D. D. Xia, Y. D. Zhao, D. Q. Guo, T. Qi and H.
 Z. Wan, *J. Power Sources*, 2014, 254, 249.
- 21. W. Kong, C. C. Lu, W. Zhang, J. Pu and Z. H. Wang, *J. Mater. Chem. A*, 2015, **3**, 12452.
- 22. L. Hao, L. Shen, J. Wang and Y. Xu, X. Zhang, RSC Adv., 2016, 6, 9950.
- 23. Z. B. Wu, X. L. Pu, X. B. Ji, Y. R. Zhu, M. J. Jing, Q. Y. Chen and F. P. Jiao, *Electrochim. Acta*, 2015, **174**, 238.