SUPPORT INFORMATION

A self-curing triphenol A-based phthalonitrile resin precursor acts as

flexibilizer and curing agent for phthalonitrile resin

Yue Hu,^a Zhihuan Weng^{*},^a Yu Qi, ^a Jinyan Wang,^a Shouhai Zhang,^a Cheng Liu, ^a Lishuai Zong,^a and Xigao Jian^a

^a State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, P.R. China. Email: zweng@dlut.edu.cn

Table 1S. The reactions conditions for preparing TPPA-Ph precursors.

Figure 1S. LC-MS of TPPA-Ph precursor and molecular ion peaks in negative mode of products.

Figure 2S. Conversion α as a function of temperature for TPPA-Ph (P4) at various heating rates.

Figure 3S. Starink plots at various degrees of conversion for TPPA-Ph (P4).

Figure 4S. Variation of *E*α versus α for TPPA-Ph (P4) (Starink method).

Scheme 1S. Synthesis of resorcinol-based phthalonitrile resin precursor (DPPH).

Figure 58. ¹H NMR spectrum of DPPH.

Table 1S. The reactions conditions for preparing TPPA-Ph precursors.

	TPPA-Ph	The molar ratio of	Reaction	Reaction time
_	precursors	TPPA : K_2CO_3 : NPh	temperature (°C)	(h)
_	P1	1:2.5:3.2	80	24
	P2	1:1.5:3.1	25	24
	P3	1:1.5:2.05	25	24
	P4	1:1.5:1.05	25	24

Figure 1S. LC-MS of TPPA-Ph (P2) and molecular ion peaks in negative mode of products.

Figure 2S. Conversion α as a function of temperature for TPPA-Ph (P4) at various heating rates.

Figure 38. Starink plots at various degrees of conversion for TPPA-Ph (P4).

Figure 4S. Variation of *E*α versus α for TPPA-Ph (P4) (Starink method).

Scheme 1S. Synthesis of resorcinol-based phthalonitrile resin precursor (DPPH).

Figure 5S. ¹H NMR spectrum of DPPH.