Electronic supplementary information

From grass to battery anode: agricultural biomass, hemp-derived carbon for lithium storage

Ji Hyun Um,^a Chi-Yeong Ahn,^{b,c} Jinsoo Kim,^d Mihee Jeong,^a Yung-Eun Sung,^{b,c} Yong-Hun Cho,^{*,e} Seung-Soo Kim^{*,f} and Won-Sub Yoon^{*,a}

^aDepartment of Energy Science, Sungkyunkwan University, Suwon 16419, South Korea

^bSchool of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea

^cCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea

^dDepartment of Chemical Engineering, Kyung Hee University, Yongin 17104, South Korea

^eDivision of Energy Engineering, Kangwon National University, Samcheok 25913, South Korea

^fDepartment of Chemical Engineering, Kangwon National University, Samcheok 25913, South Korea

Fig. S1 Schematic diagram of tubular type pyrolysis reactor in this work.

Fig. S2 SEM image of chip-shaped carbon and its small fragments.

Fig. S3 Cycle performance of natural hemp and milled hemp with ball-milling time of 1 h and 3 h at 400 mA g⁻¹ during 100 cycles.

Fig. S4 Comparison of capacity at different current densities for the milled hemp with other biomass-derived carbon anodes reported in recent years.

Fig. S5 Comparison of differential capacity profiles upon delithiation process for (a) natural hemp and (b) milled hemp after the selected cycles.

Fig. S6 (a) The 2nd GITT curves of natural hemp and milled hemp as a function of time. (b) Li⁺ diffusion coefficients (D_{Li+}) calculated from GITT profile during the 2nd discharge and charge process. The Li⁺ diffusion coefficients of black and grey colors are marked for the natural hemp and milled hemp upon the 1st de-lithiation, respectively.

Inorganic compositions / ppm				
Са	Р	Mg	K	Na
6708.52	3121.55	1283.04	46069.54	710.47

Table S1 Inorganic compositions of the hemp stem after carbonization process.

Supplementary references

- S1 R. R. Gaddam, D. Yang, R. Narayan, K. V. S. N. Raju, N. A. Kumar and X. S. Zhao, *Nano Energy*, 2016, **26**, 346–352.
- S2 C. Choi, S.-D. Seo, B.-K. Kim and D.-W. Kim, *Sci. Rep.*, 2016, **6**, 39099.
- S3 J. Tang, V. Etacheri and V. G. Pol, *Sci. Rep.*, 2016, **6**, 20290.
- S4 J. Tang, V. Etacheri and V. G. Pol, ACS Sustain. Chem. Eng., 2016, 4, 2624–2631.
- S5 K. R. Saravanan and N. Kalaiselvi, *Carbon*, 2015, **81**, 43–53.
- S6 Q. Han, Z. Yi, F. Wang, Y. Wu and L. Wang, J. Alloys Compd., 2017, 709, 227–233.
- S7 S. W. Han, D. W. Jung, J. H. Jeong and E. S. Oh, *Chem. Eng. J.*, 2014, **254**, 597–604.
- S8 L. Wang, Z. Schnepp and M. M. Titirici, J. Mater. Chem. A, 2013, 1, 5269–5273.
- S9 X. Sun, X. Wang, N. Feng, L. Qiao, X. Li and D. He, J. Anal. Appl. Pyrolysis, 2013, 100, 181–185.