Experimental Section

Materials: D-fructose (99%), inulin (from dahlia tubers), 5-hydroxymethylfurfural (5-HMF, 99%), MnCl₂•4H₂O (99%), NiCl₂•6H₂O (99%), LaCl₃•7H₂O (99%), CoCl₂•6H₂O (99%), ZnCl₂ (99%), AlCl₃•6H₂O (98%) and InCl₃•4H₂O (99%) were purchased from Aladdin (China). CrCl₃•6H₂O (98%) was purchased from Sigma-Aldrich (China). YCl₃•6H₂O (99%) was purchased from Energy Chemical (China). SnCl₄•5H₂O (99%), P₂O₅ (98%), Ni(NO₃)₂•6H₂O (98%), NiSO₄•6H₂O (98%), Cr(NO₃)₃•9H₂O (99%), Cr₂(SO₄)₃•6H₂O (99%), NaCl (99%), H₃PO₄ (85 wt%), Na₃PO₄ (98%), Na₂HPO₄ (99%), NaH₂PO₄•2H₂O (99%), dimethyl sulfoxide (DMSO, 99%) and glycerol (99%) were purchased from Sinopharm (China). Sulfuric acid (H₂SO₄, 98 wt%) was provided by a local supplier. All of the commercial chemicals were used as received. Purified water (H₂O) with a resistivity of 18.2 MΩ-cm was produced by an ultra-pure water system (Taoshi Brand, China).

Reaction procedure: Typically, fructose (60 mg), catalyst (10 mol% to fructose) and DMSO (1 mL) were added into a reaction vial with a magnetic stir bar. The vial was sealed and inserted into a heating block. The reaction mixture was stirred at the reaction temperature. After a specified time, the reaction was quenched by immersing the reaction vial in an ice-water bath. The mixture was diluted by water and a certain amount of glycerol (internal standard) was added. A small amount of reaction mixture was taken out, further diluted with water and filtered for analysis.

Analysis method: The samples were analyzed by high performance liquid chromatography (HPLC). HPLC was performed on a Shimadzu LC-16 system equiped with a Shimadzu RID-20 refractive index detector and an Agilent Hi-Plex ligand exchange column (H-form, 300×7.7 mm). A 0.005 M aqueous solution of H₂SO₄ was used as the mobile phase. The flow rate was set to be 0.65 mL/min. The column and detector temperatures were 65 °C and 50 °C, respectively. Glycerol was added as the internal standard for quantitative calculations. Fructose conversion, 5-HMF yield and selectivity were calculated by mole.

Fig. S1 The conversion of fructose into 5-HMF with different amounts of P₂O₅ (reaction conditions: fructose 60 mg; DMSO 1mL; 80 °C; 30 min).

Fig. S2 The HPLC chromatograms for the reactions with a) P₂O₅ and NiCl₂•6H₂O, b) P₂O₅ and CrCl₃•6H₂O, c) P₂O₅ and NaCl (reaction conditions: fructose 60 mg; P₂O₅ 10 mol% to fructose; metal chloride 10 mol% to fructose; DMSO 1mL; 80 °C; 30 min).

Fig. S3 Effect of different substrate loadings on the conversion of fructose (reaction conditions: $P_2O_5 10 \text{ mol}\%$ to fructose; NiCl₂•6H₂O 10 mol% to fructose; DMSO 1mL; 80 °C; 30 min).

Table S1 Results on the conversion of fructose over P2O5 and different chromium salts.^[a]

Entry	Catalyst	Fructose Conv.	5-HMF Yield (%)	5-HMF Sel. (%)
1	P ₂ O ₅	37	21	57
2	P ₂ O ₅ +CrCl ₃ ·6H ₂ O	81	67	83
3	$P_2O_5+Cr(NO_3)_3\cdot 9H_2O$	75	49	65
4	$P_2O_5+Cr_2(SO_4)_3\cdot 6H_2O$	40	26	65

^[a] Reaction conditions: fructose 60 mg; P_2O_5 10 mol% to fructose; Cr fraction 10 mol% to fructose; DMSO 1mL; 80 °C; 30 min.

Entry	Temperature (°C)	Time (min)	5-HMF Yield (%)
1	80	8	22
2	80	15	36
3	80	30	42
4	80	60	45
5	90	8	35
6	90	15	43
7	90	30	45
8	100	8	39
9	100	15	44

Table S2 Results on the conversion of inulin into 5-HMF in the studied system.^[a]

^[a] Reaction conditions: inulin 60 mg; P_2O_5 10 mol% to fructose unit in inulin; NiCl₂•6H₂O 10 mol% to fructose unit in inulin; DMSO 1mL.

Entry	Catalyst	Time (min)	Glucose Conv. (%)	5-HMF Yield (%)
1	P ₂ O ₅	30	10	
2	NiCl ₂ ·6H ₂ O	30	6	
3	CrCl ₃ ·6H ₂ O	30	11	
4	P ₂ O ₅ +NiCl ₂ ·6H ₂ O	30	11	
5	P_2O_5 +CrCl ₃ ·6H ₂ O	30	23	
6	P ₂ O ₅ +NiCl ₂ ·6H ₂ O	60	23	
7	P ₂ O ₅ +CrCl ₃ ·6H ₂ O	60	31	0.2
8	P ₂ O ₅ +AlCl ₃ ·6H ₂ O	60	44	0.2

Table S3 Results on the conversion of glucose in the studied system.^[a]

^[a] Reaction conditions: glucose 60 mg; P_2O_5 10 mol% to glucose; metal chloride 10 mol% to glucose; DMSO 1mL; 100 °C.