Electronic Supplementary Information

Nanocellulose/polypyrrole aerogel electrodes with higher conductivity via adding

vapor grown nano-carbon fiber as conducting networks for supercapacitor

application

Yanping Chen,^[a,b] Shaoyi Lyu,^{*[b]} Shenjie Han,^[b] Zhilin Chen,^[b] Wenjun Wang^{*[a]}

and Siqun Wang^[c,b]

[a] Beijing Engineering Research Center of Cellulose and Its Derivatives, School of

Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081,

China. Email: wangwenjun@bit.edu.cn

[b] Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing

100091, China. Email: lvsy@caf.ac.cn

[c] Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee,

37996, USA

1.Supporting Tables

Table S1. Details of the porous properties of CNF/VGCF and CNF/VGCF/PPy aerogels with

Samples	BET Specific surface	Average pore	Total pore volume
	area (m ² g ⁻¹)	diameter (nm)	$(cm^3 g^{-1})$
CNF/VGCF _{0.2} aerogel	50.93	10.69	0.1344
CNF/VGCF _{0.5} aerogel	61.51	10.48	0.1547
CNF/VGCF1 aerogel	67.18	11.02	0.1728
CNF/VGCF ₂ aerogel	47.81	11.47	0.1338

different VGCF contents

2.Supporting Figures

Figure S1. SEM images of (a) CNF/VGCF_{0.2} aerogel, (b) CNF/VGCF_{0.5} aerogel, (c) CNF/VGCF₂ aeroge, (d) CNF/VGCF_{0.2}/PPy aerogel, (e) CNF/VGCF_{0.5}/PPy aerogel, and (f) CNF/VGCF₂/PPy

aerogel.

Figure S2. Cross-sectional images of the aerogel films: (a) CNF/VGCF_{0.2}/PPy aerogel film, (b)

CNF/VGCF_{0.5}/PPy aerogel film and (c) CNF/VGCF₂/PPy aerogel film.

Figure S3. (a) TEM image and (b) a magnified image of VGCF.

Figure S4. (a) Pore size distributions of CNF/VGCF aerogels with different VGCF contents. (b)

XPS wide-region scan spectra of CNF/VGCF₁ and CNF/VGCF₁/PPy aerogels. (c) PPy mass loading of CNF/VGCF/PPy aerogel with different VGCF contents.

Figure S5. CV curves of (a) CNF/VGCF_{0.2}/PPy, (b) CNF/VGCF_{0.5}/PPy and (c) CNF/VGCF₂/PPy

aerogel electrodes at different scan rates. GCD curves of (d) CNF/VGCF_{0.2}/PPy, (e)

CNF/VGCF_{0.5}/PPy and (f) CNF/VGCF₂/PPy aerogel electrodes at different current densities. All

data were measured in a three-electrode test.

Figure S6. CV curves of (a) CNF/VGCF_{0.2}/PPy, (b) CNF/VGCF_{0.5}/PPy and (c) CNF/VGCF₂/PPy aerogel electrodes at different scan rates. GCD curves of (d) CNF/VGCF_{0.2}/PPy, (e) CNF/VGC $F_{0.5}$ /PPy and (f) CNF/VGCF₂/PPy aerogel electrodes at different current densities. All data were

measured in a two-electrode test.

Figure S7. Nyquist impedance plots of CNF/VGCF/PPy aerogel electrodes with different VGCF contents. The data of (a) were measured in a three-electrode test. And the data of (b) were

measured in a two-electrode test.

Figure S8. CV curves of (a) CNF/VGCF_{0.2}/PPy, (b) CNF/VGCF_{0.5}/PPy, (c) CNF/VGCF₁/PPy and

(d) CNF/VGCF₂/PPy aerogel electrodes at 20 mV s⁻¹ during cycle-stability testing. All data were

measured in a two-electrode test.