Molecular design and synthesis of new dithiocarbazate complexes; crystal structure, bioactivities and nano studies

Zahra Yekke-ghasemi,^a Reza Takjoo,*^a Mohamad Ramezani,^b and Joel T. Mague^c

SI 1 a. IR spectrum of L.

SI 1 b. IR spectrum of 1.

SI 1 c. IR spectrum of **2**.

SI 1 d. IR spectrum of **3**.

SI 1 e. IR spectrum of 4.

SI 1 f. IR spectrum of 5.

SI 1 g. IR spectrum of 6.

SI 2 a. ¹HNMR spectrum of L in DMSO- d_6 .

SI 2 b. ¹HNMR spectrum of **1** in DMSO- d_6 .

SI 2 c. ¹HNMR spectrum of **4** in DMSO- d_6 .

SI 2 d. ¹HNMR spectrum of **5** in DMSO- d_6 .

SI 2 e. ¹HNMR spectrum of **6** in DMSO- d_6 .

SI 2 f. ¹HNMR spectrum of L in DMSO-*d*₆ after D₂O addition.

SI 3 a. ¹³CNMR spectrum of L in DMSO-*d*₆.

SI 3 b. ¹³CNMR spectrum of 1 in DMSO- d_6 .

SI 3 c. ¹³CNMR spectrum of 4 in DMSO- d_6 .

SI 3 d. 13 CNMR spectrum of **5** in DMSO- d_6 .

SI 3 e. ¹³CNMR spectrum of **6** in DMSO- d_6 .

SI 4 a. TGA and DTG curves thermogram of 1.

SI 4 b. TGA and DTG curves thermogram of **2**.

SI 4 c. TGA and DTG curves thermogram of **3**.

SI 4 d. TGA and DTG curves thermogram of 4.

SI 4 e. TGA and DTG curves thermogram of 5.

SI 4 f. TGA and DTG curves thermogram of 6.

SI 5 a. C10—H10A…O1^{*i*} (2.644 Å) (symm. code *i*: 1-*x*, 1-*y*, -*z*), C7—H7…O1 (2.692 Å) hydrogen bonds and C5—H5…C_g^{*ii*} (C_g: C1-C6) (3.715 Å) (symm. code *ii*: 1-*x*, 1-*y*, 1-*z*) interaction along the *c* axis.

SI 5 b. Chains expand through C2—H2···C_g^{*iii*} (C_g: C1-C6) (2.865 Å) (symm. code *iii*: 1-x, 1-y, 1-z) interaction in the *bc* plane.

SI 5 c. Form a dimer through pairwise hydrogen bond of O4—H4A…N2^{*i*} (1.913(2) Å) (symm. code *i*: 1-*x*, 1-*y*, 1-*z*).

SI 5 d. Form a one-dimensional chain in the direction of the (-567) plane through the hydrogen bond $C9^{ii}$ —H9Aⁱⁱ…O2 (2.543 Å) (symm. code *ii*: x, 1.5 - y, 1/2 + z).

SI 5 e. Through C9—H9A···O2^{*iii*} and C4—H4A···S1^{*iv*} (2.961 Å) (symm. code *iii* and *iv*: 1 - x, 1/2 + y, 1/2 - z and x, -1 + y, z) hydrogen bonds the second dimension forms along the *b* axis.

SI 5 f. Fulfill the three dimensional structure through C2—H2···O3^v (2.606 Å) (symm. code v: x, 1.5 - y, 1/2 + z) hydrogen bonds according to the c direction.

SI 5 g. Form dimer through pairwise hydrogen bonds O4—H4A···N2^{*i*} (1.963 Å) (symm. code *i*: 1 - *x*, 1 - *y*, 1 - *z*).

SI 5 h. Formation one-dimensional chain in the direction of the *c* axis through the hydrogen bondings C9—H9A···C_g, C12—H12C···O2^{*ii*} (2.681 Å) and C5^{*i*}—H5^{*i*}···O2^{*iii*} (2.665 Å) (symm. code *ii*: 2 - *x*, 1 - *y*, 1 - *z*, *iii*: -1 + *x*, *y*, *z*).

SI 5 i. Expanding of the second dimension along the *ac* plane C2—H2···O1^{*iv*} (symm. code *iv*: 1 - *x*, 1 - *y*, -*z*) hydrogen bond.

SI 5 j. The third dimension is formed through C4—H4····S^{*v*} and C5—H5····C11^{*vi*} (symm. code *v*: *x*, -1 + *y*, -1 + *z*, *vi*: *x*, -1 + *y*, *z*) interactions along the *b* axis.

SI 5 k. C4—H4···S1^{*i*} (2.920 Å for **3** and 2.883 Å for **4**) (symm. code *i*: -1/2 + x, 1/2 + y, 1/2 + z) interaction leads to formation of one-dimensional chain through -a+c direction.

SI 5 l. Formation 2D sheets through chalcogen-chalcogen S2…S2^{*ii*} (*ii*: -1 + x, 1 - y, 1/2 + z) (3.403 Å) interactions.

SI 5 m. Expanding the planes by C9—H9B···C9^{*iii*} (*iii*: -1 + x, y, -1 + z) interaction to construct the 3D supramolecular network.

SI 5 n. Expanding the chains through C9—H9A…N2^{*i*}, C13—H13C…I1^{*ii*} (3.047 Å) and C7—H7…C_g^{*i*} (symm. code *i*: 1.5 - x, -1/2 + y, 1- z, *ii*: x, -1 + y, z) interactions.

SI 5 o. Formation the second dimension along the -a + c axis through the hydrogen bonding of C13—H13B···S2^{*iii*} (2.985 Å), C12—H12A···O1^{*vi*} (2.451 Å) and C11—H11···S2^{*iii*} (2.975 Å) (symm. code *iii*: 1 - *x*, -*y*, 1 - *z*, *vi*: 1/2 + *x*, -1 + *y*, 1/2 - *z*).

SI 5 p. The third dimension occurs along the -a - c axis through C12^v—H12A^v···O1, C11^{vi}—H11^{vi}···S2^{vi} and C13^{vi}—H13B^{vi}···S2^{vi} (symm. code v: 1 - x, -1.5 + y, 1/2 + z, vi: 1/2 + x, 1/2 - y, 1 - z) hydrogen bonds.

SI 5 q. Formation chains along the *c* axis according to the C11—H11A····C10^{*i*} (2.899 Å), C7—H7···Cl2^{*ii*} (2.819 Å), C10—H10C····Cl2^{*ii*} (3.397 Å) and H12B—C12····Cl2 (2.868 Å) interactions (symm. code *i*: *x*, *y*, -1+*z*, *ii*: 2 - *x*, 1 - *y*, 1 -

SI 5 r. formation the second dimension through the *a* axis *via* hydrogen bonds of C11—H11A···Cl2^{*iii*}, C12—H12C···Cl1^{*iii*} and C11—H11B···Cg^{*iv*} (symm. code *iii*: -1 - *x*, *y*, *z*, *iv*: 1 - *x*, 1 - *y*, -*z*).

SI 5 s. Expanding of the third dimension along b axis via C4—H4C···Cl2^v (symm. code v: x, 1 + y, z) interaction.

SI 6 a. Graph of cytotoxicity test against normal cell of CHO.

SI 6 b. Graph of cytotoxicity test against cancer cell of Hela.

SI 6 c. Graph of cytotoxicity test against cancer cell of MCF-7.

SI 6 d. The pictures of the color change of compounds during the MTT experiment against normal cell of CHO.

SI 6 e. The pictures of the color change of compounds during the MTT experiment against cancer cell of MCF-7.

SI 6 f. The pictures of the color change of compounds during the MTT experiment against cancer cell of Hela.

SI 7 a. Fluorescence quenching spectra of HSA in the presence of increasing concentration of 1. [HSA] = 15 μ M, [1] = 0-14 μ M, $\lambda_{ex} = 280$ nm, T = 298 K.

SI 7 b. Fluorescence quenching spectra of HSA in the presence of increasing concentration of **2**. [HSA] = 15 μ M, [**2**] = 0-14 μ M, $\lambda_{ex} = 280$ nm, T = 298 K.

SI 7 c. Fluorescence quenching spectra of HSA in the presence of increasing concentration of **3**. [HSA] = 15 μ M, [**3**] = 0-14 μ M, $\lambda_{ex} = 280$ nm, T = 298 K.

SI 7 d. Fluorescence quenching spectra of HSA in the presence of increasing concentration of 4. [HSA] = 15 μ M, [4] = 0-14 μ M, λ_{ex} = 280 nm, T = 298 K.

SI 7 e. Fluorescence quenching spectra of HSA in the presence of increasing concentration of **5**. [HSA] = 15 μ M, [**5**] = 0-14 μ M, $\lambda_{ex} = 280$ nm, T = 298 K.

SI 7 f. Fluorescence quenching spectra of HSA in the presence of increasing concentration of **6**. [HSA] = 15 μ M, [**6**] = 0-14 μ M, $\lambda_{ex} = 280$ nm, T = 298 K.

SI 7 g. Stern-Volmer plot for quenching of HSA (15 μ M) fluorescence by **1** at different concentrations ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 342$ nm).

SI 7 h. Stern-Volmer plot for quenching of HSA (15 μ M) fluorescence by 2 at different concentrations ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 342$ nm).

SI 7 i. Stern-Volmer plot for quenching of HSA (15 μ M) fluorescence by **3** at different concentrations ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 344$ nm).

SI 7 j. Stern-Volmer plot for quenching of HSA (15 μ M) fluorescence by 4 at different concentrations ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 344$ nm).

SI 7 k. Stern-Volmer plot for quenching of HSA (15 μ M) fluorescence by 5 at different concentrations ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 342$ nm).

SI 7 l. Stern-Volmer plot for quenching of HSA (15 μ M) fluorescence by **6** at different concentrations ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 345$ nm).

SI 7 m. Plot of $\frac{F_0}{F_0 - F}$ vs 1/[L²⁻] for HSA in the presence of increasing concentrations of **1** at T = 298 K (λ_{ex} = 280 nm, λ_{em} = 342 nm).

SI 7 n. Plot of $\frac{F_0}{F_0 - F}$ vs 1/[L²⁻] for HSA in the presence of increasing concentrations of **2** at T = 298 K (λ_{ex} = 280 nm, λ_{em} = 342 nm).

SI 7 o. Plot of $\frac{F_0}{F_0 - F}$ vs 1/[L²⁻] for HSA in the presence of increasing concentrations of **3** at T = 298 K (λ_{ex} = 280 nm, λ_{em} = 344 nm).

SI 7 p. Plot of $\frac{F_0}{F_0 - F}$ vs 1/[L²⁻] for HSA in the presence of increasing concentrations of 4 at T = 298 K (λ_{ex} = 280 nm, λ_{em} = 344 nm).

SI 7 q. Plot of $\frac{F_0}{F_0 - F}$ vs 1/[L²⁻] for HSA in the presence of increasing concentrations of **5** at T = 298 K (λ_{ex} = 280 nm, λ_{em} = 342 nm).

SI 7 r. Plot of $\frac{F_0}{F_0 - F}$ vs 1/[L²⁻] for HSA in the presence of increasing concentrations of **6** at T = 298 K (λ_{ex} = 280 nm, λ_{em} = 345 nm).

SI 7 s. Double-log plots for the fluorescence quenching of the HSA by 1.

SI 7 t. Double-log plots for the fluorescence quenching of the HSA by 2.

SI 7 u. Double-log plots for the fluorescence quenching of the HSA by **3**.

SI 7 v. Double-log plots for the fluorescence quenching of the HSA by 4.

SI 7 w. Double-log plots for the fluorescence quenching of the HSA by **5**.

SI 7 x. Double-log plots for the fluorescence quenching of the HSA by 6.

SI 8 a. The XRD patterns of *a*) computed from single-crystal X-ray data of **1** and *b*) Nanostructure of **1**.

SI 8 b. a) SEM image of 1 complex, b) EDX spectrum analysis of 1 complex.

SI 8 c. The average nanoparticle size by PLS method of **1**.

SI 8 d. The XRD patterns of *a*) computed from single-crystal X-ray data of **2** and *b*) Nanostructure of **2**.

SI 8 e. The XRD patterns of *a*) computed from single-crystal X-ray data of **3** and *b*) Nanostructure of **3**.

SI 8 g. The average nanoparticle size by PLS method of **3**.

SI 8 h. SEM images of 4 complex.

SI 8 i. The average nanoparticle size by PLS method of 4.

SI 8 j. TEM image of **5** complex.

SI 8 k. SEM images of **5** complex.

SI 8 l. The average nanoparticle size by PLS method of **5**.

SI 8 m. The XRD patterns of *a*) computed from single-crystal X-ray data of **6** and *b*) Nanostructure of **6**.

SI 8 n. SEM images of 6 complex.

SI 8 o. The average nanoparticle size by PLS method of **6**.