Electronic Supplementary Information

The Influence of Molecular Structure on Collision Radius for Optical Sensing of

Molecular Oxygen Based on Cyclometalated Ir(III) Complexes

Ling Di,¹[‡] Yang Xing,¹[‡]* Xiaoning Wang,¹ Daoyuan Zheng,² Yang Yang,² Fayun Li,^{1*}

[*] Corresponding-Author.

[‡] These authors contributed to this work equally.

¹College of Chemistry, Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China. Tel.: +86-24-56860865. E-mail: xingyang@Inpu.edu.cn; <u>flilnpu@163.com</u>

²State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Contents

¹ H NMR of IrA1	2
Fig. S1	2
Fig. S2	2
Fig. S3	3
Fig. S4	3
Table S1	4
Table S2	4
Table S3	5
The limits of detection	4
References	5

Fig. S1 Phosphorescence emission decay curves of all the Ir(III) complexes in THF in neat N_2 . Monoexponential decay regression gave lifetime.

Fig. S2 CIE Plots for IrA1-IrA3 and Ir(ppy)₃

Fig. S3 Cyclic voltammogram of all the Ir(III) complexes. 0.1 M $[Bu_4N]PF_6$ in THF, scan rate 100 mV s⁻¹, measured using saturated calomel electrode (SCE) as the standard.

Fig. S4 Molecular orbitals of IrA1-IrA3 and $Ir(ppy)_3$ for the ground state geometry. Calculated by DFT/PCM = THF at the B3LYP/6-31G(d)/LanL2DZ level using Gaussian 16.

Table S1 Frontier orbital ener	gy levels of all the Ir	(III) complexes
--------------------------------	-------------------------	-----------------

Ir(III) complexes	HOMO (eV) experimental ^a	LUMO (eV) experimental ^b	<i>E</i> g (eV) experimental ^c
lr(ppy)₃	-5.24	-2.96	2.28
lrA1	-5.18	-2.89	2.29
lrA2	-5.17	-3.06	2.11
IrA3	-5.18	-3.02	2.16
$^{a}E_{HOMO}$ (eV) = -e	$(4.4 + \frac{E_{ox}}{ox})$. 0.1 M [Bu ₄ N]PF ₆ in	THF, scan rate 100 mV s ⁻¹ , me	easured using saturated

 $^{a}E_{HOMO}$ (eV) = -e(4.4 + $^{a}\alpha$). 0.1 M [BU₄N]PF₆ in THF, scan rate 100 mV s⁻¹, measured using saturated calomel electrode (SCE) as the standard. $^{b}E_{LUMO} = E_{HOMO} + E_{g}$. Estimated from the absorption edge (λ_{edge}) of solid films by equation of E_{g} = 1240/ λ_{edge} .

Table S2 Parameters for IrA1-IrA3 and Ir(ppy)₃; 10^{-5} M in THF on the concentration of O₂ at 0-100%, 25°C. (fitting of the result to the two-site model)

Complexes	λ _{ex} (nm)	λ _{em} (nm)	$f_1{}^{a}$	f_2^{a}	K _{SV1} b	K _{SV2} b	<i>r</i> ^{2 c}	$K^{app}_{\ SV \ \mathbf{d}}$
lr(ppy) ₃	400	511	0.985	0.015	121.4	0.00001	0.99983	119.6
lrA1	400	520	0.999	0.001	138.7	0.00001	0.99979	138.6
lrA2	400	522	0.998	0.002	171.7	0.00001	0.99978	171.4
IrA3	400	522	0.998	0.002	205.2	0.00001	0.99985	204.8
^a Ratio of the two portions of the Ir(III) complexes. ^b Quenching constant of the two portions(bar ⁻¹). ^c								
Determination coefficients. ^d Weighted quenching constant (bar ⁻¹).								

The limits of detection (LODs) of IrA1-IrA3Vand Ir(pp^3 y)₃ in THF² LOD =

Limit of detection (LOD)

 K_{SV}^{app}

Signal to noise ratio (S/N) $S/N = 20\log (U_1/U_0)$ U₁: Signal amplitude U₀: Noise amplitude Ir(ppy)₃: U₁ = 511.3, U₀ = 1.3, S/N = 51.9, LOD = 0.43 mbar IrA1: U₁ = 659.9, U₀ = 1.3, S/N = 54.1, LOD = 0.39 mbar IrA2: U₁ = 502.7, U₀ = 1.3, S/N = 51.8, LOD = 0.30 mbar IrA3: U₁ = 871.1, U₀ = 1.3, S/N = 56.5, LOD = 0.27 mbar

Ir(III) complexes	Data	1	2	3	4	5	Mean	Standard
lr(ppy)₃	I ₀	511.3	518.6	511.6	532.6	536.4	522.10	10.53
τ ₀ (2.38 μs)	<i>I</i> ₁₀₀	6.4	5.9	6.3	6.3	6.0	6.18	0.19
	<i>I</i> ₀ / <i>I</i> ₁₀₀ -1	78.4	86.9	80.6	83.4	88.1	83.48	3.66
lrA1	<i>I</i> ₀	659.9	706.8	635.9	675.9	708.6	677.42	27.82
τ ₀ (2.93 μs)	<i>I</i> ₁₀₀	5.4	4.9	5.2	5.3	5.0	5.17	0.19
	<i>I</i> ₀ / <i>I</i> ₁₀₀ -1	121.9	144.4	122.1	126.3	141.0	131.13	9.63
_	$\sigma_{\rm IrA1}/\sigma_{\rm Ir(ppy)^3}$	1.26	1.35	1.22	1.23	1.30	1.27	0.05
IrA2	<i>I</i> ₀	502.7	524.4	489.4	490.7	509.2	503.28	12.90
τ ₀ (2.51 μs)	<i>I</i> ₁₀₀	3.5	3.0	3.5	3.4	3.1	3.30	0.21
	<i>I</i> ₀ / <i>I</i> ₁₀₀ -1	142.2	173.2	136.9	142.5	161.7	151.30	13.82
	$\sigma_{\rm IrA2}/\sigma_{\rm Ir(ppy)^3}$	1.72	1.89	1.61	1.62	1.74	1.72	0.10
IrA3	I ₀	871.1	930.1	900.1	857.4	857.6	883.27	28.12
τ ₀ (2.42 μs)	<i>I</i> ₁₀₀	5.1	4.7	4.9	4.9	4.7	4.87	0.15
	<i>I</i> ₀ / <i>I</i> ₁₀₀ -1	169.8	194.4	181.9	174.7	181.8	180.52	8.31
	$\sigma_{\rm IrA3}/\sigma_{\rm Ir(ppy)3}$	2.13	2.20	2.22	2.06	2.03	2.13	0.07

Table S3 The phosphorescent decay time (τ), emission intensity ratio (I_0/I_{100} -1), and the ratio of collision radiuses ($\sigma/\sigma_{Ir(ppy)^3}$) of all the Ir(III) complexes.

References.

- 1 A. B. Tamayo; B. D. Alleyne; P. I. Djurovich; S. Lamansky; I. Tsyba; N. N. Ho; R. Bau; M. E. Thompson, *J. Am. Chem. Soc.*, 2003, **125**, 7377.
- 2 X. D. Wang; O. S. Wolfbeis, Chem. Soc. Rev., 2014, 43, 3666.