SUPPLEMENTARY INFORMATION

Molecular dynamics derived life times of active substrate binding poses explain K_m of laccase mutants

Rukmankesh Mehra^{1,2}, Anne S. Meyer^{2,*}, and Kasper P. Kepp^{1,*}

¹ Technical University of Denmark, DTU Chemistry, Building 206, 2800 Kgs. Lyngby, Denmark.

² Technical University of Denmark, DTU Bioengineering, Building 221, 2800 Kgs. Lyngby, Denmark.

Corresponding Authors

^{*}Kasper P. Kepp, E-mail: <u>kpj@kemi.dtu.dk</u>

* Anne S. Meyer, E-mail: <u>asme@dtu.dk</u>

ORCID of Authors

0000-0001-6010-1514, 0000-0001-8910-9931, 0000-0002-6754-7348

Mutation	Simulation	Neutralizing	Total number of	Number of
	cell size (Å ³)	counter ions	atoms in the system	water molecules
WT (pH 3.4)	487813	8Na ⁺	44990	12509
D206A	487819	7Na ⁺	45020	12520
D206N	487799	7Na ⁺	45030	12522
WT (pH 5.0)	487840	12Na ⁺	44936	12491
F332A	487936	12Na ⁺	44935	12494
F337A	487998	12Na ⁺	44932	12493

Table S1. Preparation of the protein-ligand complexes for MD simulation.

Table S2. Analysis of the binding energies of 2,6-DMP complexes with six laccase variants.

Mutation	pН	Km	kcat/Km	MMGBSA bind affinity at 0 Å
		(µM)	(s ⁻¹ mM)	flexibility (kcal/mol)
WT	3.4	190	2.7	-32.7
D206A	3.4	1630	0.4	-30.8
D206N	3.4	3280	0.09	-23.5
WT	5.0	17±5	N/A	-29.6
F332A	5.0	165±5	N/A	-26.4
F337A	5.0	N/A	N/A	-28.1

Figure S1. RMSD plots of laccase variants during run 1 (50 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0).

Figure S2. RMSD plots of laccase variants during run 2 (200 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0).

Figure S3. RMSD plots of laccase variants during run 3 (200 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0).

Figure S4. RMSD plots of laccase variants during run 4 (300 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0).

Protein RMSF plots (Run 1 - 50 ns)

Figure S5. RMSF plots of laccase variants during run 1 (50 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0).

Protein RMSF plots (Run 2 - 200 ns)

Figure S6. RMSF plots of laccase variants during run 2 (200 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0).

Figure S7. RMSF plots of laccase variants during run 3 (200 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0).

Figure S8. RMSF plots of laccase variants during run 4 (300 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0).

Ligand RMSD plots (Run 1 - 50 ns)

Figure S9. RMSD plots of 2,6-DMP during run 1 (50 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0).

Figure S10. RMSD plots of 2,6-DMP during run 2 (200 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0). (**f**) F337A (pH 5.0).

Figure S11. RMSD plots of 2,6-DMP during run 3 (200 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0). (**f**) F337A (pH 5.0).

Figure S12. RMSD plots of 2,6-DMP during run 4 (300 ns) MD simulations. (**a**) WT (pH 3.4). (**b**) D206A (pH 3.4). (**c**) D206N (pH 3.4). (**d**) WT (pH 5.0). (**e**) F332A (pH 5.0). (**f**) F337A (pH 5.0). (**f**) F337A (pH 5.0).

Figure S13. Interactions fraction of all the six laccase variants with 2,6-DMP during 50 ns MD simulations. (a) WT (pH 3.4). (b) D206A (pH 3.4). (c) D206N (pH 3.4). (d) WT (pH 5.0). (e) F332A (pH 5.0). (f) F337A (pH 5.0).

Figure S14. Timeline representation of the laccase WT (pH 3.4) and 2,6-DMP contacts and interactions during 50 ns MD run.

Figure S15. Timeline representation of the laccase WT (pH 5.0) and 2,6-DMP contacts and interactions during 50 ns MD run.

Figure S16. Timeline representation of the laccase D206A (pH 3.4) and 2,6-DMP contacts and interactions during 50 ns MD run.

Figure S17. Timeline representation of the laccase D206N (pH 3.4) and 2,6-DMP contacts and interactions during 50 ns MD run.

Figure S18. Timeline representation of the laccase F332A (pH 5.0) and 2,6-DMP contacts and interactions during 50 ns MD run.

Figure S19. Timeline representation of the laccase F337A (pH 5.0) and 2,6-DMP contacts and interactions during 50 ns MD run.

Figure S20. SASA plots of 2,6-DMP during run 1 (50 ns) MD simulations. (a) WT (pH 3.4). (b) D206A (pH 3.4). (c) D206N (pH 3.4). (d) WT (pH 5.0). (e) F332A (pH 5.0). (f) F337A (pH 5.0).

Figures S21. MD simulation (for 50 ns) of another pose of 2,6-DMP in the TvL WT structure (pH 3.4). (a) Protein and ligand RMSD plot. (b) Protein RMSF and B factor. Red regions represent α helix, blue color shows β strand, and white color indicate the loop regions that occurred >70% simulation time. (c) Ligand RMSF. (d) Protein-ligand interactions. (e) Ligand SASA.

Figure S22. Timeline representation of the laccase WT (pH 3.4) and 2,6-DMP pose contacts and interactions during 50 ns MD run.

Figures S23. Initial and final frame structures of a 50-ns MD simulation of another pose of 2,6-DMP in the TvL WT structure (pH 3.4).

Figure S24. MD simulation (for 150 ns) of another pose of 2,6-DMP in the TvL WT structure (pH 3.4). (a) Protein RMSD plot. (b) Ligand RMSD plot. (c) Protein RMSF plot. (d) Ligand RMSF plot.

Figure S25. ABTS interaction with WT (pH 3.4) TvL.