Supporting Information for

Specific colorimetric detection of Fe³⁺ ions in aqueous solution

by squaraine-based chemosensor

Xiaoqian Liu,* ^a Na Li, ^a Min-Min Xu, ^b Chunhui Jiang, ^c Jianhao Wang, ^a Guoqiang Song, ^{*a}

Yong Wang *b

^a School of Pharmaceutical Engineering and Life Science, Changzhou University, 213164, Jiangsu, China
^b College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
^c School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang, Jiangsu, China, 212003

*Corresponding authors Email address: chmliux@cczu.edu.sg (Xiaoqian Liu); sgq@cczu.edu.cn (Guoqiang Song); yowang@suda.edu.cn (Yong Wang)

Table of Contents

1.	General Information	.S3
2.	NMR spectrum of compound TSQ	S4
3.	Comparison of TSQ with recently reported chemosnesors	.S4
4.	Mass spectrum of TSQ and TSQ-Fe³⁺ complex	
5.	Reversibility study of TSQ-Fe³⁺ with EDTA	.S6

1. General Information

Reagents and apparatus

Unless stated, all the reagents used were of analytical grade from commercial sources without further purification. ¹H NMR (400 MHz) and¹³C NMR (400 MHz) spectra were recorded on a Bruker AV-400 spectrometer (TMS as internal standard). Mass spectrometry analysis was performed on a Q exactive mass spectrometer (Thermo Fisher Scientific, USA). Absorption spectra were measured on M5 spectrometer.

Nuclear Magnetic Resonance Spectroscopy

Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectroscopy were performed on 400 MHz NMR spectrometers. Chemical shifts are reported as δ in units of parts per million (ppm) downfield from tetramethysilane (δ 0.00), using the residual solvent signal as an internal standard: chloroform-d, CDCl₃, (¹H NMR, δ 7.26, singlet; ¹³C NMR, δ 77.04, triplet). Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), m (muliplets). The number of protons (n) for a given resonance is indicated by numbers of H.

UV-vis titration measurements

10 mM stock solution of **TSQ** was prepared by dissolving the required amount in DMSO. Further dilutions were made to prepare 100 μ M of **TSQ** by adding mixed solution. The different concentrations of metal ions were consequently were added in to make total volume of 200 μ L. Absorption measurements were made in 96 well plates.

2. NMR Spectra for TSQ

Figure S1. ¹H NMR spectrum for compound TSQ

Figure S2. ¹³C NMR spectrum for compound TSQ

3. Comparison of TSQ with recently reported chemosnesors

Sensor	Target	Response type	LOD (µM)	Reaction media	Reversibility	Refere nce
Sugar-			-			
functioned	Fe ³⁺	Color	4.6	H ₂ O	No	58
coumarin						
Julolidine	Fo ³⁺	Color	68	DME	No	50
derivative	re-	Color	0.0	DMF	INO	39
Hetarylazo	Fe ³⁺	Color	2.0	CH ₃ CN	No	41
Our work	Fe ³⁺	Color	1.0	20% AcOH- H2O	Yes	/

Table S1 Comparison of TSQ with recently reported chemosnesors

4. Mass spectrum of TSQ and TSQ-Fe³⁺ complex

Figure S3a. High resolution mass spectrum for TSQ

Figure S3b. High resolution mass spectrum for [TSQ+Fe³⁺+CH₃COOH+H⁺]

Figure S4. Stepwise complexation/decomplexation cycles were carried out in 20% AcOH-H₂O solution with TSQ and Fe³⁺