Supporting Information

Enhanced oxygen reduction activity of Pt shells on PdCu truncated octahedra with different compositions

Xingqiao Wu,[§] Qingfeng Xu,[§] Yucong Yan, Jingbo Huang, Xiao Li, Yi Jiang, Hui Zhang,* Deren Yang

State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.

*Correspondence to: msezhanghui@zju.edu.cn

[§] These two authors contribute equally to this work.

Samples Pd/Cu/Pt atomic ra		wt% of Pt	
Pd ₂ Cu@Pt	6.1:3:1	18.8	
PdCu@Pt	4.5:4.3:1	20.6	
PdCu ₂ @Pt	4.2:7.4:1	17.4	

Table S1 ICP-AES data of the Pd_xCu@Pt core-shell nanocrystals

Table S2 Average number (n) of Pt atomic layers and the weight percentage of Pt derived from the geometry analysis and ICP-AES data.

Samples	n of Pt atomic	weight percentage of Pt	weight percentage of Pt	
	layers	calculated from the value of n	calculated from the ICP data	
Pd ₂ Cu@Pt	2	14.36 (n=1)	18.8	
		25.45 (n=2)		
PdCu@Pt	2	13.62 (n=1)	20.6	
		23.39 (n=2)		
PdCu ₂ @Pt	1	17.9 (n=1)	17.4	
		30.9 (n=2)		

Table S3 Electrochemical performances of the Pd_xCu@Pt and Pt/C catalysts

Samples	ECSA (m ² /g _{Pt})	<i>i</i> s (mA/cm ²)	i _m (mA/μg _{Pt})	i _m /ADT [*] (mA/μg _{Pt})	durability**
Pd ₂ Cu@Pt	129.0	0.46	0.59	0.42	71.2%
PdCu@Pt	106.2	0.37	0.39	0.24	61.5%
PdCu ₂ @Pt	70.3	0.31	0.22	0.15	68.2%
Pt/C	78.2	0.17	0.13	0.096	73.8%

*The results of ADTs with 10,000 cycles are listed here.

**The durability is obtained by using the ratio of current densities after and before the ADTs.

Fig. S1 (a, c, e) TEM images and (b, d, f) corresponding size distributions of Pd_2Cu , PdCu and PdCu₂ truncated octahedra.

Fig. S2 XRD patterns of Pd_2Cu , PdCu and $PdCu_2$ truncated octahedra. The black and red vertical lines represent the positions of standard diffraction peaks for Pd and Cu, respectively.

Fig. S3 (a, c, e) TEM images and (b, d, f) corresponding size distributions of $Pd_2Cu@Pt$, PdCu@Pt and $PdCu_2@Pt$ truncated octahedra.

Fig. S4 XRD patterns of Pd₂Cu@Pt truncated octahedra.

Fig. S5 Morphological, structural, and compositional characterizations of truncated octahedral PdCu₂@Pt nanocrystals (a) HAADF-STEM image, (b) HRTEM image, (c) EDX mapping image, and (d) line-scanning profiles.

Fig. S6 (a) Pd 3d and (b) Pt 4f XPS spectra of Pd₂Cu@Pt, PdCu@Pt and PdCu₂@Pt truncated octahedra.

Fig. S7 Cyclic voltammetry (CV) curves of (a) $Pd_2Cu@Pt$, PdCu@Pt and $PdCu_2@Pt$ catalysts, and (b) Pt/C catalysts in Ar-saturated 0.1 M HClO₄ solution with a scan rate of 50 mV/s.

Fig. S8 TEM images of Pd₂Cu@Pt catalysts (a) before and (b) after ADTs for 10000 cycles in O_2 saturated 0.1 M HClO₄ solution.