Supporting Information

Enhanced oxygen reduction activity of Pt shells on PdCu truncated octahedra with different compositions

Xingqiao Wu, ${ }^{\text {§ }}$ Qingfeng Xu, ${ }^{\S}$ Yucong Yan, Jingbo Huang, Xiao Li, Yi Jiang, Hui Zhang,* Deren Yang

State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
*Correspondence to: msezhanghui@zju.edu.cn
${ }^{\text {§ }}$ These two authors contribute equally to this work.

Table S1 ICP-AES data of the $\mathrm{Pd}_{\mathrm{x}} \mathrm{Cu} @ \mathrm{Pt}$ core-shell nanocrystals

Samples	$\mathbf{P d} / \mathbf{C u} / \mathbf{P t}$ atomic ratio	$\mathbf{w t} \%$ of $\mathbf{P t}$
$\mathbf{P d}_{2} \mathbf{C u} @ \mathbf{P t}$	$6.1: 3: 1$	18.8
$\mathbf{P d C u} @ \mathbf{P t}$	$4.5: 4.3: 1$	20.6
$\mathbf{P d C u}_{2} @ \mathbf{P t}$	$4.2: 7.4: 1$	17.4

Table S2 Average number (n) of Pt atomic layers and the weight percentage of Pt derived from the geometry analysis and ICP-AES data.

Samples	n of Pt atomic layers	weight percentage of Pt calculated from the value of n	weight percentage of Pt calculated from the ICP data
$\mathrm{Pd} \mathrm{Cu}_{2} @ \mathrm{Pt}$	2	$14.36(\mathrm{n}=1)$	18.8
		$25.45(\mathrm{n}=2)$	
$\mathrm{PdCu} @ \mathrm{Pt}$	2	$13.62(\mathrm{n}=1)$	20.6
		$23.39(\mathrm{n}=2)$	
$\mathrm{PdCu}_{2} @ \mathrm{Pt}$	1	$17.9(\mathrm{n}=1)$	17.4
		$30.9(\mathrm{n}=2)$	

Table S3 Electrochemical performances of the $\mathrm{Pd}_{\mathrm{x}} \mathrm{Cu} @ \mathrm{Pt}$ and Pt / C catalysts

Samples	ECSA $\left(\mathbf{m}^{2} / \mathbf{g}_{\mathbf{P t}}\right)$	$\boldsymbol{i}_{\boldsymbol{s}}$ $\left(\mathbf{m A} / \mathbf{c m}^{2}\right)$	$\boldsymbol{i}_{\boldsymbol{m}}$ $\left(\mathbf{m A} / \boldsymbol{\mu g}_{\mathbf{P t}}\right)$	$\boldsymbol{i}_{\boldsymbol{m}} / \mathbf{A D T}^{*}$ $\left(\mathbf{m A} / \boldsymbol{\mu g}_{\mathbf{P t}}\right)$	$\mathbf{d u r a b i l i t y * *}^{* *}$
$\mathbf{P d} \mathbf{2} \mathbf{C u @ P t}$	129.0	0.46	0.59	0.42	71.2%
$\mathbf{P d C u @ P t}$	106.2	0.37	0.39	0.24	61.5%
$\mathbf{P d C u} @ \mathbf{P t}$	70.3	0.31	0.22	0.15	68.2%
$\mathbf{P t} / \mathbf{C}$	78.2	0.17	0.13	0.096	73.8%

*The results of ADTs with 10,000 cycles are listed here.
**The durability is obtained by using the ratio of current densities after and before the ADTs.

Fig. S1 (a, c, e) TEM images and (b, d, f) corresponding size distributions of $\mathrm{Pd}_{2} \mathrm{Cu}$, PdCu and PdCu_{2} truncated octahedra.

Fig. S2 XRD patterns of $\mathrm{Pd}_{2} \mathrm{Cu}, \mathrm{PdCu}$ and PdCu_{2} truncated octahedra. The black and red vertical lines represent the positions of standard diffraction peaks for Pd and Cu , respectively.

Fig. S3 (a, c, e) TEM images and (b, d, f) corresponding size distributions of $\mathrm{Pd}_{2} \mathrm{Cu} @ \mathrm{Pt}, \mathrm{PdCu} @ \mathrm{Pt}$ and $\mathrm{PdCu}_{2} @ \mathrm{Pt}$ truncated octahedra.

Fig. S4 XRD patterns of $\mathrm{Pd}_{2} \mathrm{Cu} @ \mathrm{Pt}$ truncated octahedra.

Fig. S5 Morphological, structural, and compositional characterizations of truncated octahedral $\mathrm{PdCu}_{2} @$ Pt nanocrystals (a) HAADF-STEM image, (b) HRTEM image, (c) EDX mapping image, and (d) line-scanning profiles.

b

Fig. S6 (a) Pd 3d and (b) Pt 4f XPS spectra of $\mathrm{Pd}_{2} \mathrm{Cu} @ \mathrm{Pt}, \mathrm{PdCu} @ \mathrm{Pt}$ and $\mathrm{PdCu}_{2} @ \mathrm{Pt}$ truncated octahedra.

Fig. S7 Cyclic voltammetry (CV) curves of (a) $\mathrm{Pd}_{2} \mathrm{Cu} @ \mathrm{Pt}, \mathrm{PdCu} @ \mathrm{Pt}$ and $\mathrm{PdCu}_{2} @ \mathrm{Pt}$ catalysts, and (b) Pt/C catalysts in Ar-saturated $0.1 \mathrm{M} \mathrm{HClO}_{4}$ solution with a scan rate of $50 \mathrm{mV} / \mathrm{s}$.

Fig. S8 TEM images of $\mathrm{Pd}_{2} \mathrm{Cu} @ \mathrm{Pt}$ catalysts (a) before and (b) after ADTs for 10000 cycles in O_{2} saturated $0.1 \mathrm{M} \mathrm{HClO}_{4}$ solution.

