Supporting Information

Theoretical Analyses on Water Cluster Structures in Polymer Electrolyte Membrane by Using Dissipative Particle Dynamics Simulations with Fragment Molecular Orbital Based Effective Parameters

Koji Okuwaki¹, Yuji Mochizuki^{1,2*}, Hideo Doi^{1\$}, Shutaro Kawada¹, Taku Ozawa³, Kenji Yasuoka⁴

¹ Department of Chemistry and Research Center for Smart Molecules, Faculty of Science,

Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8, Japan

² Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku,

Tokyo 153-8505, Japan

³JSOL Corporation, 2-5-24 Harumi, Chuo-ku, Tokyo 104-0053, Japan

⁴ Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan

^{\$} Present address: Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan

(*email for correspondences: fullmoon@rikkyo.ac.jp)

Functional forms of the potentials used in DPD

In Eq. (7) of the main text, the dissipative force \mathbf{F}_{ij}^{D} is a hydrodynamic drag and is given by¹

$$\mathbf{F}_{ij}^{D} = \begin{cases} -\gamma \omega^{D}(r_{ij})(\mathbf{n}_{ij} \cdot \mathbf{v}_{ij})\mathbf{n}_{ij} & r_{ij} < r_{c} \\ 0 & r_{ij} \ge r_{c} \end{cases},$$
(S1)

where γ is a friction parameter related to the viscosity of the given system. $\omega^{D}(r_{ij})$ is the weighting function and the velocity difference is defined as $\mathbf{v}_{ij} = \mathbf{v}_j - \mathbf{v}_i$.

The random force \mathbf{F}_{ij}^{R} corresponds to thermal noise and is governed by the parameter σ and another weighting function $\omega^{R}(r_{ij})$ as follows:¹

$$\mathbf{F}_{ij}^{R} = \begin{cases} \sigma \omega^{R}(r_{ij}) \zeta_{ij} \Delta t^{-1/2} \mathbf{n}_{ij} & r_{ij} < r_{c} \\ 0 & r_{ij} \ge r_{c} \end{cases}.$$
 (S2)

The randomness is incorporated through the element ζ_{ij} , which is a randomly fluctuating variable with Gaussian statistics,

$$\langle \zeta_{ij}(t) \rangle = 0, \tag{S3}$$

$$\langle \zeta_{ij}(t)\zeta_{kl}(t')\rangle = (\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})\delta(t-t') .$$
(84)

They are assumed to be uncorrelated for different particle pairs and time. There is a relation between two weighting functions and two parameters,

$$\omega^{D}(r_{ij}) = \left[\omega^{R}(r_{ij})\right]^{2} \tag{S5}$$

$$\sigma^2 = 2\gamma kT . \tag{S6}$$

In our simulation, the weighting function was chosen as follows:¹

$$\omega^{D}(r_{ij}) = [\omega^{R}(r_{ij})]^{2} = \begin{cases} (r_{c} - r_{ij})^{2} & r_{ij} < r_{c} \\ 0 & r_{ij} \ge r_{c} \end{cases}$$
(S7)

The variable $\Delta t^{-1/2}$ in Eq. (S2) is used to ensure the consistent diffusion of particles independent of the step size of the integrations.^{1,2}

The spring force \mathbf{F}_{ij}^{S} for a polymer is considered as harmonic springs for the equilibrium bond distance \mathbf{r}_{s} if *i* is connected to *j*,¹

$$\mathbf{F}_{ij}^{S} = -\mathcal{C}(\boldsymbol{r}_{s} - \boldsymbol{r}_{ij})\mathbf{n}_{ij}.$$
(S8)

The parameter set appeared in the above-mentioned equations is given in Table S1. Additionally, the actual a_{ij} parameters in \mathbf{F}_{ij}^{C} are compiled in Table S2.

References

- R. D. Groot and P. B. Warren, Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation, *J. Chem. Phys.*, 1997, **107**, 4423.
- 2 R. D. Groot and T. J. Madden, Dynamic simulation of diblock copolymer microphase separation, *J. Chem. Phys.*, 1998, **108**, 8713–8724.

Table S1. The values of the parameters used in DPD potentials.

Parameter	Value
σ	3
γ	4.5
r_s	0.86
Ċ	4.0

Pair	Nafion	SPEEK
A-B	24.44	22.55
A-C	49.54	41.14
B-C	49.05	36.54
A-W	107.91	116.80
B-W	116.05	88.69
C-W	11.60	12.65
A-A	25.0	25.0
B-B	25.0	25.0
C-C	25.0	25.0
W-W	25.0	25.0

Table S2. The a_{ij} parameters used in this work.

Figure S1. Plots of time-dependent water connectivity for SPEEK (circle) and Nafion (a) (diamond) in the case of 30 vol% water content.

