Supporting Information for

Tuning of spinel magnesium ferrite nanoparticles with enhanced magnetic

properties

Liyun Zheng^{a,b*}, Kan Fang^a, Meiling Zhang^b, Zhixian Nan^a, Lixin Zhao^{c*}, Dong Zhou^b, Minggang Zhu^b and Wei Li^b

^{a.} College of Materials Science and Engineering, Hebei University of Engineering, Handan, 056038 China.

^{b.} Division of Functional Materials, Central Iron & Steel Research Institute, 76 Xueyuan South Road, Beijing 100081, China.

c College of Mechanical and Equipment Engineering, Hebei University of Engineering, 199 Guangming South Street, Handan 056038, Hebei, China.

^{*} Corresponding author: zhengliyun@126.com; zhengl

Fig. S1 High resolution TEM images of $MgFe_2O_4$ magnetic nanoparticles synthesized at (a) 160 °C, (b) 180 °C and (c) 200 °C for 6 h, (d) 180 °C for 3 h and (e) 180 °C for 12 h.