

Electronic Supplementary Information (ESI) for

A Ni (II)-based Coordination Polymers for Efficient Electrocatalytic Oxygen Evolution Reaction

Zhi-Qiang Jiang,^{a*} Yu-Feng Li,^a Xue-Jun Zhu,^a Jin Lu,^a Lei Zhang^b and Tian Wen^{b*}

[a] Zhi-Qiang Jiang, Yu-Feng Li, Xue-Jun Zhu, Jin Lu

Deep-processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, Panzhihua, Sichuan, 617000, P. R. China. E-mail: jiangzhiqiang@mail.pzhu.edu.cn

[b] Lei Zhang, T. Wen

School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia. E-mail: tian.wen@unimelb.edu.au

Part I: Experimental Section

1. Ni CPs structural determination

Diffraction data of Ni (II) coordinated polymer were collected on a Bruker D8 QUEST single crystal diffractometer equipped with graphite-monochromatic Mo K α radiation ($\lambda = 0.71073 \text{ \AA}$) at 273 K. The structure was solved by the direct method and refined by the SHELXTL-2014 software package. The structure determination parameters and crystallographic data are summarized in Table S1. Powder X-ray diffraction (PXRD) analyses were studied on a Rigaku Dmax2500 diffractometer with Cu K α radiation ($\lambda = 1.54056 \text{ \AA}$) using a step size of 0.05°. Thermogravimetric analyses (TGA) were tested on a Mettler Toledo TGA/SDTA 851e analyzer using a heating rate of 10 °C/min under N₂ atmosphere. Elemental analyses (EA) for C, H, and N were done on an EA1110 CHNSO CE elemental analyzer.

2. Electrochemical Measurements

All electrochemical experiments were performed in a three-electrode glass cell. The data were recorded using a CHI760 D at room temperature. The reference electrode was Ag/AgCl and the counter electrode was a platinum wire. Glassy carbon (GC, surface area = 0.196 cm²) was acted as the substrate of working electrodes, on which the Ni based polymers were attached with 0.05 wt% nafion binder and the loading mass of sample is ~0.23 mg cm⁻². The linear sweep voltammetry (LSV) tests were carried out at a scan rate of 5 mV s⁻¹. The measured potentials vs. Ag/AgCl were converted to a reversible hydrogen electrode (RHE) scale via the Nernst equation ($E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.059 \times \text{pH} + 0.213$). The Tafel slope was calculated according to Tafel equation ($\eta = b \cdot \log(j/j_0)$).

3. Synthesis of Ni CPs

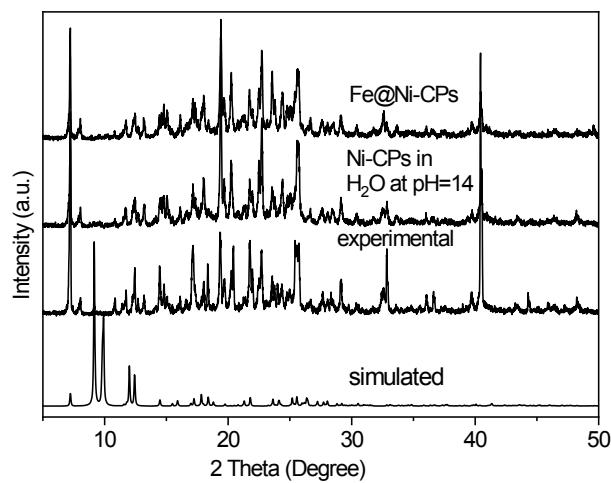
4,4'-Bipyridine (0.11g, 6.41mmol), Ni(ClO₄)₂·6H₂O (0.586g, 1.61mmol) in a water (H₂O; 5mL) solution were placed in a 23 mL vial. The sample was heated at 130 °C for two days, and then cooled to room-temperature. After washing with distilled water, the blue crystals were obtained (51% yield). EA calc. (%) for C₄₀H₃₆Cl₂N₈NiO₁₂: C, 50.51; H, 3.78; N, 11.79; found: C 50.57, H 3.76, N, 11.81.

3.1 Synthesis of Fe@Ni-CPs

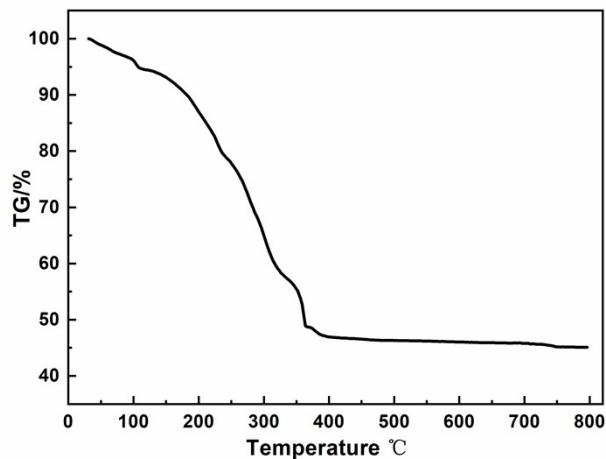
Fresh **Ni-CPs** sample was immersed in (NH₄)₂SO₄·FeSO₄·6H₂O solution (10 mM) for 4 hours. Further, the obtained **Fe@Ni-CPs** was washed with water and ethanol three times before use.

4. Ni-CPs coated on glassy carbon electrode (Ni-CPs@GC)

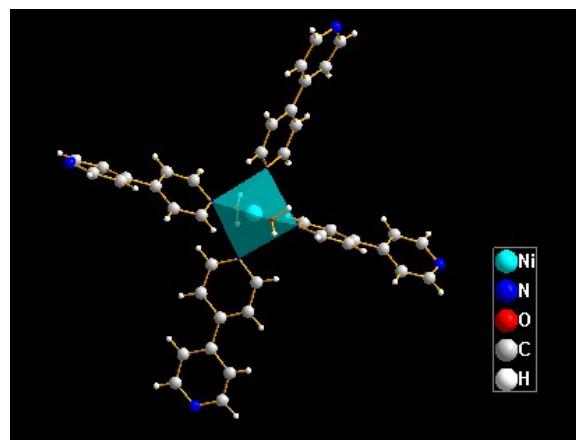
The as-synthesized **Ni-CPs** was firstly dispersed in the mixture of 1 ml of 0.05 wt.% nafion water solution, and then transferred onto the glassy carbon electrode with a loading amount of ~ 0.23 mg cm $^{-2}$. The resulting electrode was drying in air for 4 h before use.

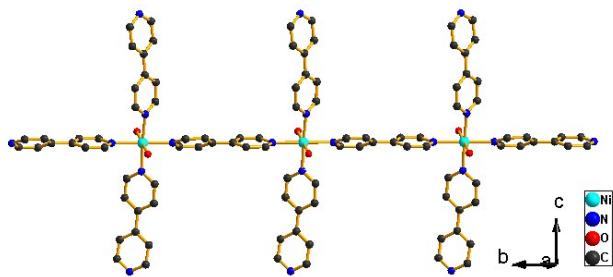

4.1 Fe@Ni-CPs coated on glassy carbon electrode (Fe@Ni-CPs@GC)

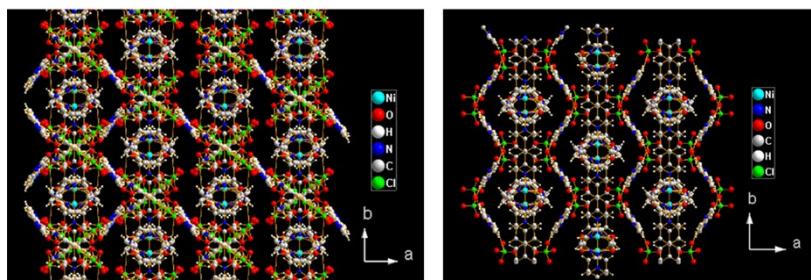
The procedure for preparation of **Fe@Ni-CPs@GC** is similar to **Ni-CPs@GC** except for using **Fe@ Ni-CPs** instead of **Ni-CPs**.

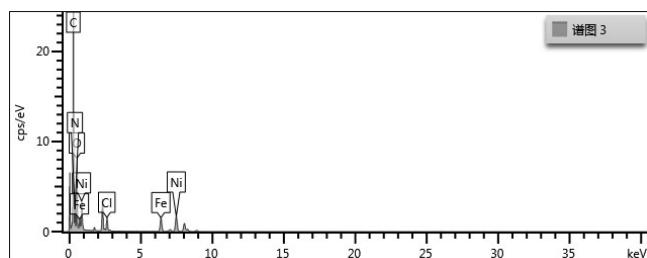

4.2 Ru/C coated on glassy carbon electrode (Ru/C@GC)

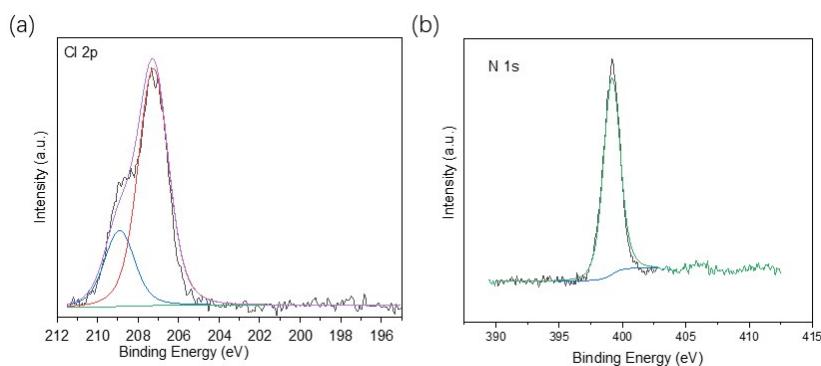
The procedure for preparation of **Ru/C@GC** is similar to **Ni-CPs@GC** except for using **Ru/C** in place of **Ni-CPs**.

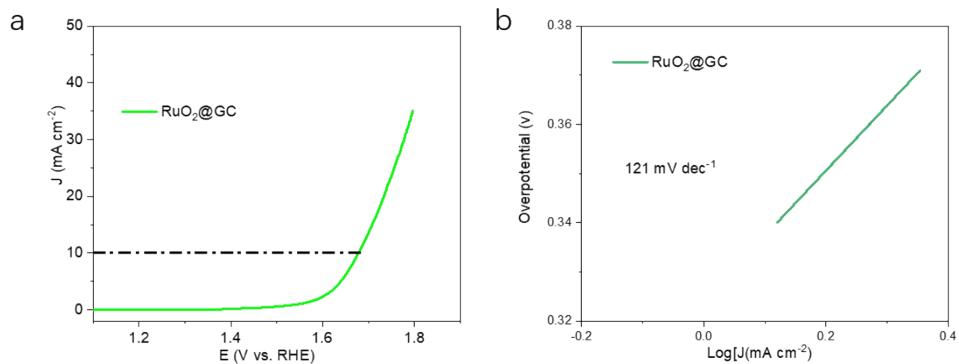

Part II: Supplementary Results

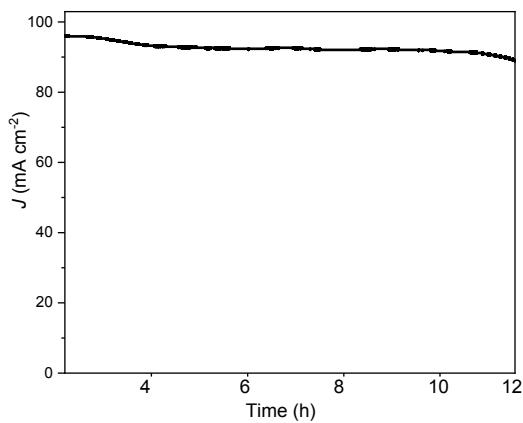

Figure S1. The PXRD patterns of Ni CPs under different conditions.

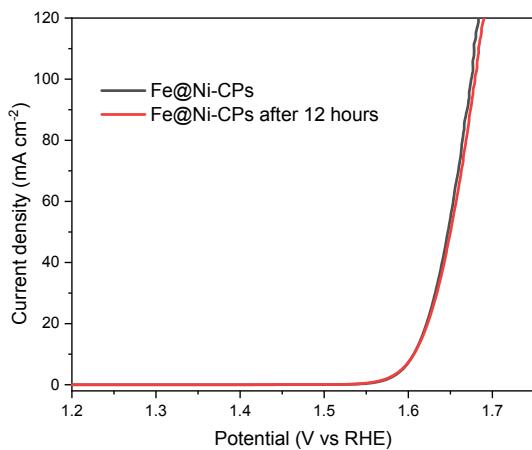

Figure S2. Thermogravimetric profiles recorded for Ni-CPs.

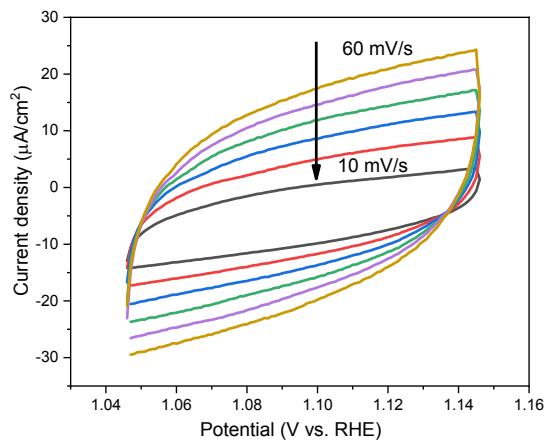

Figure S3. The coordination environment of Ni-CPs.


Figure S4. The single chain of Ni-CPs.


Figure S5. The 3D packing of Ni CPs (left: reported, right: this work) .


Figure S6. EDX of Fe@ Ni- CPs.


Figure S7. XPS spectrum of the Cl 2p (a) and N1s(b).


Figure S8. (a) LSV curves of $\text{RuO}_2/\text{C}@\text{GC}$ and (b) Tafel plots of RuO_2/C at pH = 14.

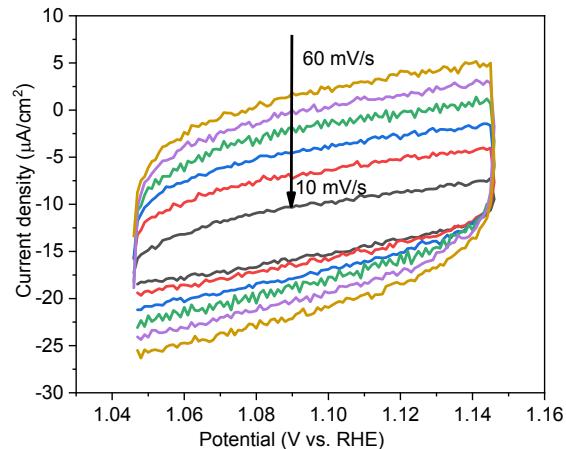

Figure S9. Chronoamperometric curves of $\text{Fe}@\text{Ni-CPs}$ conducted at 1.55 V.

Figure S10. LSV of $\text{Fe}@\text{Ni-CPs}$ after 12 hours stability test in 1 M KOH aqueous solution.

Figure S11. CV curves at different scan rates in the range of 1.04 and 1.15 V vs. RHE for Fe@ Ni-CPs.

Figure S12. CV curves at different scan rates in the range of 1.04 and 1.15 V vs. RHE for Ni-CPs

Table S1. Summary of crystallographic data and refinement results.

	Ni-CPs
chemical formula	C ₄₀ H ₃₆ Cl ₂ N ₈ NiO ₁₂
formula mass	950.36
Space group	C2/c
a/Å	17.9784(12)
b/Å	11.4346(8)
c/Å	24.4647(17)
α/°	90.00
β/°	92.082(2)
γ/°	90.0
Volume/Å ³	5026.0(6)
Temperature/K	273(2)
Z	4
absorption coefficient (μ/mm ⁻¹)	0.554
No. of reflections measured	23130
No. of independent reflections	4962
R _{int}	0.0401
GOF on F ²	0.997
R ₁ , ^a wR ₂ [I > 2δ(I)]	R ₁ = 0.1032, wR ₂ = 0.3371
R ₁ , wR ₂ (all data)	R ₁ = 0.1181, wR ₂ = 0.3562
CCDC Number	1858717

^aR₁ = Σ(|Fo| - |Fc|)/Σ|Fo|, wR₂ = [Σw(Fo² - Fc²)²/Σw(Fo²)²]^{0.5}

Table S2. Comparison of the OER activities of **Fe@Ni-CPs** with reported MOF-based electrocatalysts supported on different substrates.

Catalyst	Onset potential (V vs.RHE)	Over-potential at 10 mA cm ⁻² (mV vs. RHE)	Tafel Slope (mVdec ⁻¹)	Substrate	Ref
MAF-X27-OH	1.47	292	88	Cu Foil	1
Co-ZIF-9	NA	510 at 1 mA cm ⁻²	193	FTO glass	2
Co-WOC-1	1.62	390 at 1 mA cm ⁻²	128	GC	3
USTA-16	1.60	408	77	GC	4
Co/MIL-100(Fe)	1.58	734 (5mA cm ⁻²)	NA	GC-RDE	5
Ni/Fe-BTC	NA	270	43	NF	6
Co/MIL-101	1.53	477	122	GC-RDE	7
NiFe-MOF-74	NA	223	76	Ni Foam	8
MOF NU-1000	NA	320	59	FTO glass	9
CoOx-ZIF/C	1.548	318	70	Glassy carbon	10
Ni-CPs	1.62	458	97	GC	This work
Fe@Ni-CPs	1.52	368	59	GC	This work

References:

- [1] X.-F. Lu, P.-Q. Liao, J.-W. Wang, J.-X. Wu, X.-W. Chen, C.-T. He, J.-P. Zhang, G.-R. Li and X.-M. Chen, *J. Am. Chem. Soc.*, 2016, **138**, 8336.
- [2] S. Wang, Y. Hou, S. Lin and X. Wang, *Nanoscale*, 2014, **6**, 9930.
- [3] J. Jiang, L. Huang, X. Liu and L. Ai, *ACS Appl. Mater. Inter.*, 2017, **9**, 7193.
- [4] L. Wang, Y.-Z. Wu, R. Cao, L.-T. Ren, M.-X. Chen, X. Feng, J.-W. Zhou and B. Wang, *ACS Appl. Mater. Interfaces*, 2016, **8**, 16736.
- [5] B. A. Johnson, A. B. hunia and S. Ott, *Dalton Trans.* 2017, **46**, 1382.
- [6] J. Chi, H. M. Yu, B. W. Qin, L. Fu, J. Jia, B. L. Yi and Z. G. Shao, *ACS Appl. Mater. Interfaces*, 2017, **9**, 464.
- [7] F. Yan, C. Zhu, S. Wang, Y. Zhao, X. Zhang, C. Li and Y. Chen, *J. Mater. Chem. A*, 2016, **4**, 6048.

- [8] J. Xing, K. Guo, Z. Zou, M. Cai, J. Du and C. Xu, *Chem. Commun.*, 2018, **54**, 7046.
- [9] C. Kung, J. E. Mondloch, T. C. Wang, W. Bury, W. Hoffeditz, B. M. Klahr, R. C. Klet, M. J. Pellin, O. K. Farha and J. T. Hupp. *ACS Appl. Mater. Interfaces*, 2015, **7**, 28223.
- [10] S. Dou, C. L. Dong, Z. Hu, Y. C. Huang, J. I. Chen, L. Tao, D. Yan, D. Chen, S. Shen and S. Chou, *Adv. Funct. Mater.*, 2017, **27**, 1702546