Supplementary content

Sword-like CuO/CeO₂ composites derived from Ce-BTC metal organic

framework with superior CO oxidation performance

Yin Wang ^a, Yiqiang Yang ^a, Ning Liu ^a, Yuxin Wang ^b, Xiaodong Zhang ^{a,*}

^a School of Environment and Architecture, University of Shanghai for Science and Technology,

Shanghai 200093, China

^b Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou

Zhejiang 318000, China

^{*} To whom correspondence should be addressed. Tel. +86 15921267160, Fax. +86 021 55275979 E-mail address: <u>fatzhxd@126.com</u>, <u>zhangxiaodong@usst.edu.cn</u> (X.D. Zhang)

Catalvata	BET	Pore volume	Pore size
Catalysis	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)
CuCeBTC-2	101	0.25	1.3~4
CuCeBTC-5	120	0.28	1.3~4
CuCeBTC-10	143	0.31	0.5~4
CuCeBTC-20	194	0.23	0.5~4
Ce-BTC ^[1]	42	0.085	1.5~2

Table S1 Physicochemical properties of CuCe-BTC materials

Table S2 Surface elemental composition and states of CuO/CeO_2 catalysts determined

Catalysts	Surface composition (at.%)	O _{latt} (%)	O_{ads}	О _{ОН} (%)	Cu ^{+/0} (%)	Cu ²⁺ (%)
	Cu2p Ce3d O1s C1s		(%)			
CuCeO-2	4.51 17.97 54.16 23.36	60.3	18.2	21.5	48	52
CuCeO-5	5.07 16.59 53.61 24.73	72	17.2	10.8	70	30
CuCeO-10	5.55 16.94 52.4 25.11	69	10.8	20.2	63	27
CuCeO-20	8.61 15.19 51.13 25.07	64	10.3	25.7	54	46
CeO ₂ ^[2]	- 12.27 50.19 37.54	91.7	8.3	—	—	—

	α peak		βpe	ak	γ peak		
Catalysts	H_2	Peak	H ₂	Peak	H_2	Peak	
	consumption	temperature	consumption	temperatur	e consumption	temperature	
	(µmolg ⁻¹)	(°C)	(µmolg ⁻¹)	(°C)	(µmolg ⁻¹)	(°C)	
CuCeO-2	373	150	907	165	619	193	
CuCeO-5	1030	146	1994	175	186	204	
CuCeO-10	1122	150	4030	176	211	214	
CuCeO-20	2364	182	5791	212	346	251	

Table S3 H_2 consumption amount and reduction temperature of CuO/CeO₂ catalysts

Catalysts	Synthesis method	Morphology	Cu content (%)	Space volocity (mL h ⁻¹ g ⁻¹)	T ₁₀₀ (°C)	References
CuO/CeO ₂	In-situ solvothermal method	Sword	4.18	18000	100	This work
CuO-CeO ₂	Incipient wetness impregnation method	Irregular particle	-	20000	150	20
CeO ₂ :Cu ²⁺	In-situ solvothermal method	Nanorods made up of many particles	10	60000	200	21
CuO@Ce O ₂	Incipient wetness impregnation method	Irregular spherical particle	30	48000	95	33

Table S4 Catalytic activities for CO oxidation of CuO/CeO_2 catalysts derived from

MOFs

Supplementary caption

Fig. S1 XRD patterns of CeBTC (a), CuBTC (b), CuCeBTC-2 (c), CuCeBTC-5 (d), CuCeBTC-10 (e) and CuCeBTC-20 (f).

Fig. S2 TG curves of CeBTC (a), CeCuBTC-5 (b), CeCuBTC-10 (c) and CeCuBTC-20 (d).

Fig. S3 N_2 adsorption-desorption isotherms (A) and corresponding pore size distributions (B) of CeBTC (a), CuCeBTC-2 (b), CuCeBTC-5 (c), CuCeBTC-10 (d) and CuCeBTC-20 (e).

Fig. S4 SEM images of CeBTC (a), CeCuBTC-2 (b), CeCuBTC-5 (c), CeCuBTC-10 (d) and CeCuBTC-20 (e).

Fig. S5 N_2 adsorption-desorption isotherms (A) and corresponding pore size distributions (B) of CeO₂ (a), CuCeO-2 (b), CuCeO-5 (c), CuCeO-10 (d) and CuCeO-20 (e).

Fig. S6 XRD results of CuCeO-5 before (a) and after (b) CO oxidation reaction

Fig. S7 TEM result of CuCeO-5 after CO oxidation reaction

Fig. S8 Catalytic activities for CO oxidation of CuCeO-2 (A), CuCeO-5 (B), CuCeO-10 (C) and CuCeO-20 (D) reused for three times

Fig. S9 catalytic activities for CO oxidation at different space velocities (30000 mL h⁻¹ g^{-1} (A), 60000 mL h⁻¹ g^{-1} (B)) of CuCeO-2 (a), CuCeO-5 (b), CuCeO-10 (c) and CuCeO-20 (d).

Fig. S1 XRD patterns of CeBTC (a), CuBTC (b), CuCeBTC-2 (c), CuCeBTC-5 (d), CuCeBTC-10 (e) and CuCeBTC-20 (f).

Fig. S2 TG curves of CeBTC (a), CeCuBTC-5 (b), CeCuBTC-10 (c) and CeCuBTC-20 (d).

Fig. S3 N_2 adsorption-desorption isotherms (A) and corresponding pore size distributions (B) of CeBTC (a), CuCeBTC-2 (b), CuCeBTC-5 (c), CuCeBTC-10 (d) and CuCeBTC-20 (e).

Fig. S4 SEM images of CeBTC (a), CeCuBTC-2 (b), CeCuBTC-5 (c), CeCuBTC-10 (d) and CeCuBTC-20 (e).

Fig. S5 N_2 adsorption-desorption isotherms (A) and corresponding pore size distributions (B) of CeO₂ (a), CuCeO-2 (b), CuCeO-5 (c), CuCeO-10 (d) and CuCeO-20 (e).

Fig. S6 XRD results of CuCeO-5 before (a) and after (b) CO oxidation reaction

Fig. S7 TEM result of CuCeO-5 after CO oxidation reaction

Fig. S8 Catalytic activities for CO oxidation of CuCeO-2 (A), CuCeO-5 (B), CuCeO-

10 (C) and CuCeO-20 (D) reused for three times

Fig. S9 catalytic activities for CO oxidation at different space velocities (30000 mL h⁻¹ g^{-1} (A), 60000 mL h⁻¹ g^{-1} (B)) of CuCeO-2 (a), CuCeO-5 (b), CuCeO-10 (c) and CuCeO-20 (d).