Supporting Information

Molten salt construction of stable oxygen vacancies on TiO₂ for

enhancement of visible light photocatalytic activity

Yu Zou,^a Kaimeng Yang,^a Qirong Chen,^{*b} Haitao Wang^c and Xiangfu Meng^{*a}

^aDepartment of Chemistry, Capital Normal University, Beijing 100048, P. R. ChinaDepartment of Chemistry, Capital Normal University, Beijing 100048, China.

^bBeijing Center for Physical and Chemical Analysis (BCPCA), Beijing 100089, China..

^cBaxter Healthcare, 12F No989, Shanghai 200031, China.

Fig.S2 X-band EPR spectra of B-TiO₂ synthesized with MS at different time and temperature. A longer annealing time and a higher temperature will lead to increase of the bulk Ti³⁺ defect concentration and decrease of surface oxygen vacancy concentration.

Fig. S3 TEM of TiO_2 synthesized with addition of NaF via molten salt.

Fig. S4 Photographs of B-TiO₂ calcinated in air at different temperature for 2h. It is found that the dark blue color fades to white gradually with increasing the calcination temperature from 300 °C to 600 °C.

Fig. S5 XRD of TiO_2 synthesized with different TFA amount via MS method.

Fig. S6 Effect of TFA amount on photocatalytic activity of B-TiO₂.

Fig. S7 Effect of molten salt dosage on photocatalytic activity.

Fig. S8 Photodegradation of RhB over calcinated $B-TiO_2$ at different temperature. It is clear to see that the photocatalytic activity of calcinated $B-TiO_2$ at $300^{\circ}C$ decreases slightly. However, the

Fig. S9 Photodegradation of RhB under full spectrum light irradiation.