Supporting information

Fabrication of microporous layer – free hierarchy gas diffusion electrode as a low Pt-loading PEMFC cathode by direct growth of helical carbon nanofibers

Robin Sandström^a, Joakim Ekspong^a, Alagappan Annamalai^a, Tiva Sharifi^{a, b}, Alexey Klechikov^a, Thomas Wågberg^{a,*}

^aDepartment of Physics, Umeå University, Umeå 90187, Sweden

^b Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.

Fig. S1. Raman spectra of the Pd_2C_{60} decorated carbon paper. A downshift in the C_{60} breathing mode evidences formation of Pd_2C_{60} phase already in the sonicated $Pd_2(dba)_3C_{60}$ mixture. In addition, a removal of dba ligands due to thermal annealing at 200°C is observed. The full mechanism of this process is detailed elsewhere[1].

Fig. S2. Additional SEMs displaying morphologies of CP-HCNFs in the case where a surplus of Pd catalyst was applied (a-b) and the initial stages of the growth is illustrated in (c). Pt traces could be observed on the other side of the CP (d) after Pt autoclave decoration.

Fig. S3. Intermediate lens aperture aimed at a selected Pt-HCNF cluster (a) and its corresponding Selected area electron diffraction (b) displaying crystalline Pt NPs .

Fig. S4. SEM of commercial Pt/C – Vulcan (20%) decorated on type 34 AA GDL by spraycoating. The Pt loading is similar to the fabricated Pt/HCNF GDL (0.05 mg_{Pt} cm⁻²).

Fig. S5. Bode phase plot corresponding to the EIS measurements performed (see Fig. 6 a).

Fig. S6. Hydrogen under potential deposition ECSA test of Pt/C - Vulcan (20%) performed on a conventional glassy carbon electrode on Ar saturated 0.1 M HClO₄ electrolyte. For comparison purposes, the Nafion[®] amount was set to 33 wt.%, yielding an ECSA of 68 m²/g_{Pt}.

Fig. S7. Cell resistance as measured by simultaneous I-interrupt during recording of polarization curves.

Fig. S8. In situ ECSA measured under N_2 saturated cathode with the anode used as counter and reference electrode under H_2 flow. Several CV's were recorded until reaching stable performance where cycling conditions were varied such that low fluctuations in current (noise) were reached. Presented curves are here recorded with 40 mV s⁻¹ and 50 mV s⁻¹ for Pt-HCNFs/CP and Pt-Vulcan/CP respectively. H_{UPD} Integration limited by the onset of H_2 evolution yields roughly 15.0 m²/g_{Pt} and 7.5 m²/g_{Pt} for Pt-Vulcan/CP and Pt-HCNFs/CP respectively.

Table S1.Summary of electrochemical data including EIS circuit fit, ECSA (in situ) and ECSA (ex situ). The ex situ ECSA could be measured in a conventional manner for the commercial catalyst for comparison purposes (shown in parenthesis). The real Pt utilization factors are calculated according to equation S1.

Sample	EIS fit	$R_{S} + R_{ele}$	R _{CT}	CPE	ECSA (in	ECSA (ex	Utilization	Real
	(chi-	[Ω]	[Ω]	[mF]	situ), m²	situ), m²	factor	utilization
	square)				<i>g</i> -1	g ⁻¹		factor
						(actual)		
Pt-	0.00030	346	40000	0.58	15.0	37.9	0.40	0.0032
Pt- Vulcan/CP	0.00030	346	40000	0.58	15.0	37.9 (68.0)	0.40	0.0032
Pt- Vulcan/CP Pt-	0.00030	346 209	40000 25000	0.58	15.0 7.5	37.9 (68.0) 11.1	0.40	0.0032

The real catalyst utilization (U_{Pt}) was calculated by

$$U_{Pt} = \frac{N_S}{N_t} * 100,$$
(S1)

where N_s is the number of exposed surface atoms measured via the ex situ ECSA and N_t is the total number of Pt atoms within the electrode directly estimated through the Pt loading.

References

[1] F. Nitze, H.R. Barzegar, T. Wagberg, Phys. Status Solidi B-Basic Solid State Phys., 249 (2012) 2588-2591.