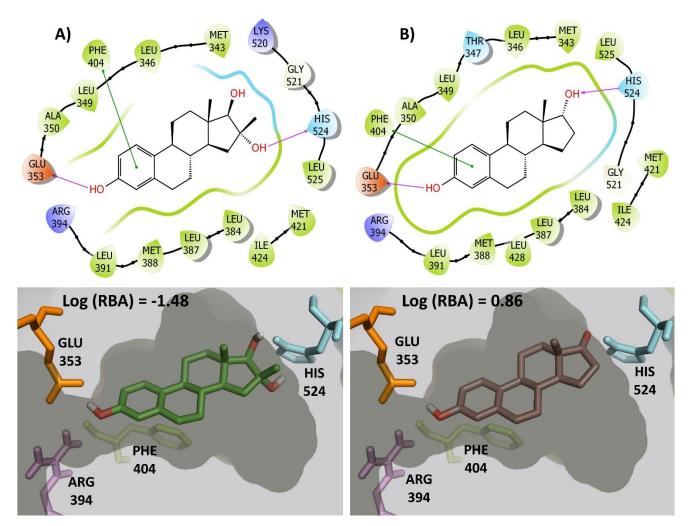
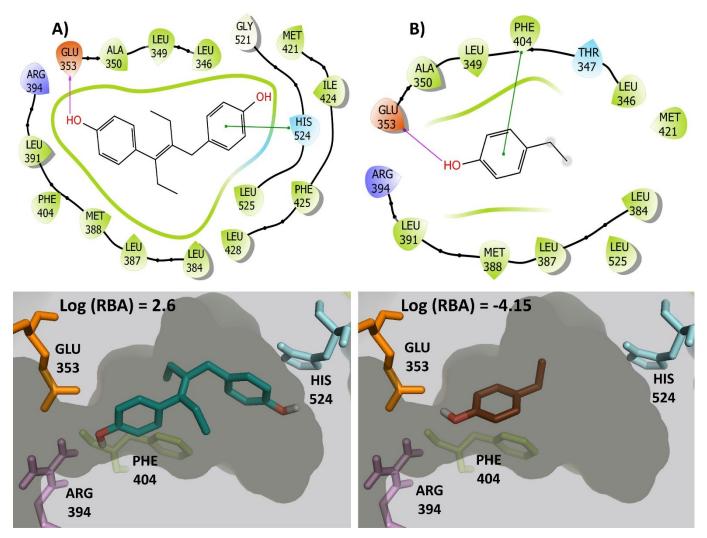
SUPPLEMENTARY INFORMATION

Chemical space, diversity and activity landscape analysis of estrogen receptor binders

J. Jesús Naveja,^{1,2,3} Ulf Norinder,^{4,5} Daniel Mucs,^{4,6} Edgar López-López,^{1,7} Jose L. Medina-Franco^{*,1}


¹Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico

²PECEM, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico ³Department of Life Science Informatics, Bonn-Aachen International Center for Information Technology, University of Bonn, Bonn, 53113, Germany


⁴Swetox, Karolinska Institutet, Unit of Toxicology Sciences, SE-151 36 Södertälje, Sweden

⁵Department of Computer and Systems Sciences, Stockholm University, Box 7003, SE-164 07 Kista, Sweden ⁶Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden

⁷Medicinal Chemistry Laboratory, University of Veracruz, Veracruz, Mexico

Figure S1. 2D and 3D representation of representative activity cliff generators and selected pairs of compounds with greater difference in activity. **A**) 16beta-ol-16alfa-methyl-3-methyl-estradiol and **B**) estrone. The figure includes the value of the relative binding affinity (RBA) as reported by.¹⁴

Figure S2. 2D and 3D representation of representative activity cliff generators and selected pairs of compounds with greater difference in activity. **A**) diethylstilbestrol and **B**) 4-ethylphenol. The figure includes the value of the relative binding affinity (RBA) as reported by.¹⁴