Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Inorganic molecules (O2, NO) adsorption on Nitrogen and Phosphorus doped MoS₂ monolayer using first principle calculations

Hafiz Ghulam Abbas^a*, Tekalign Terfa Debela^b, Sajjad Hussain^c, Iftikhar Hussain^d

^a Department of Nanoscience and Nanotechnology, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea

^bInstitute for Application of Advanced Material, Jeonju University, Chonju Chonbuk 55069, Republic of Korea

^c Department of Nano and Advanced Materials Engineering, Sejong University, Seoul 143-747, Republic of Korea

^d School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea

* E-mail: ga32949@gmail.com, abbas@jbnu.ac.kr

Contents

I. Supplementary Tables.

Table S1. Adsorption energy of O₂ molecule to the N-doped and P-doped MoS₂ monolayer.

Table S2. Adsorption energy of NO molecule to the N-doped and P-doped MoS₂ monolayer.

Table S3. Relative energy of doped (4×4) MoS₂ monolayer for different configurations, respectively.

.II. Supplementary Figures

Figure S1.The chemical structure for a different configuration of doped $(4 \times 4)MoS_2$ monolayer.

Figure S2. The total electronic density of states (TDOS) and PDOS of (4×4) N-MoS₂.

Figure S3. The total electronic density of states (TDOS) and PDOS of (4×4) P-MoS₂

Figure S4. Band structure of pristine monolayer MoS2 and (4×4) MoS2-O₂ complex.

Figure S5. Chemical structure of the 2N and 2P substituted $(4 \times 4)MoS_2-2O_2$ complex.

Figure S6. The total electronic density of states (TDOS) and PDOS of (4×4) N-MoS₂-O₂ complex system.

Figure S7. The PDOS of (4×4) P-MoS₂-O₂ complex.

Figure S8. Chemical structure of the 2N and 2P substituted $(4 \times 4)MoS_2$ -2NO complex.

Figure S9. The total electronic density of states (TDOS) and PDOS of (4×4) N-MoS₂-NO complex system.

Figure S10. The total electronic density of states (TDOS) and PDOS of (4×4) P-MoS₂-NO complex system.

Table S1. Adsorption energy (E_{ad}) of the O₂ gas molecule to the N and P substituted (4 × 4) MoS₂ monolayer for different configurations, P, V represents parallel and vertical orientations of the molecule, respectively.

Configuration	Absorbent	Absorbate	Ead (eV) ^a	Erel (eV) ^b
P ₁	N-MoS ₂	O_2	-0.32	0.00
V ₁	N-MoS ₂	O ₂	-0.29	0.03
P2	N-MoS ₂	O ₂	1.67	1.99
P ₁	P-MoS ₂	O ₂	-1.27	0.00
V1	P-MoS ₂	O ₂	-1.11	0.16
P2	P-MoS ₂	O ₂	-0.80	2.07

^a The adsorption energy per gas molecule to the MoS₂ surface.

 $^{\rm b}$ Relative energy defined as the total energy of each configuration minus that of the most stable configuration $A_{\rm i}$.

Table S2. Adsorption energy (E_{ad}) of NO gas molecule to the N and P substituted $(4 \times 4)MoS_2$ monolayer for different configurations, P, V represents parallel and vertical orientations of the molecule, respectively.

Configuration	Absorbent	Absorbate	Ead (eV) ^a	Erel (eV) ^b
\mathbf{P}_1	N-MoS ₂	NO	-0.56	0.00
V ₁	N-MoS ₂	NO	-0.46	0.09
P2	N-MoS ₂	NO	-0.09	0.47
P ₁	P-MoS ₂	NO	-1.44	0.00
V_1	P-MoS ₂	NO	-1.42	0.01
P ₂	P-MoS ₂	NO	-0.64	0.79
P ₃	P-MoS ₂	NO	-0.36	1.07

 $\overline{\ }^{a}$ The adsorption energy per gas molecule to the MoS₂ surface.

^b Relative energy defined as the total energy of each configuration minus that of the most stable configuration

Configuration	Dopant	Erel (eV)b
A	N	0.00
В	Ν	0.005
С	Ν	0.05
D	N	0.36
A	Р	0.00
В	Р	0.37
С	Р	0.40
D	Р	0.43

Table S3. Relative energy of substituted (4×4) MoS₂ monolayer for different configurations, respectively.

^a The substituted Nitrogen and phosphorus atoms.

^b Relative energy defined as the total energy of each configuration minus that of the most stable configuration

Tables S3 compares the relative stabilities of various configurations of the doped (4×4) MoS₂ monolayer and doping concentration ranges from 3.12% to 6.25% per MoS₂ unit, corresponding to $N_{\rm D}$ = 1-2, here $N_{\rm D}$ represents the number of impurity atoms. In this regard, we note that MoS₂ layer contains three sublayers, and impurities can only be entered in the upper and lower sublayers (U_U, U_L) occupied by sulfur atoms. Here, U_U and U_L denote the upper and lower sublayers of the MoS_2 layer, respectively. For $N_D = 1$ value, the impurity atom doped into the center of the MoS₂ monolayer and model ensure that distance among the adjacent image is larger than 12.0 Å. However, for $N_D = 2$ in configuration A, B impurity atom doped on U_U and other on U_L sublayers of the MoS₂ monolayer far away from the central atom to avoid interaction between the dopants and one S-Mo bond apart as shown in Fig. S1. On the other hand, in configuration C and D second impurities located on U_U sublayer of the MoS₂ are two and four S-Mo bonds apart from a central atom. The most stable configuration is referred to as A and it is more stable than the B, C, and D, irrespective of $N_{\rm D}$. We used a most stable configuration in this work to study the adsorption of gas molecules. Based on this observation, configurations with higher defects concentrations can be generated in such a way to include as many S-Mo motifs as possible.

Fig. S1. The chemical structure for a different configuration of $(4 \times 4)MoS_2$ monolayer substituted with N atom, violet, yellow, and green sphere represent Mo, S, and N atoms, respectively.

Fig. S2. The total electronic density of states (TDOS) of (4×4) N-MoS₂ monolayer and their corresponding PDOS of Mo, S, and N atoms for a spin-up and spin-down states, respectively.

Fig. S3. The total electronic density of states (TDOS) of (4×4) P-MoS₂ monolayer and their corresponding PDOS of Mo, S, and P atoms for a spin-up and spin-down states, respectively.

Fig. S4. Band structure of a $(4 \times 4)MoS_2-O_2$ complex system for spin-up and spin-down states, respectively.

Fig. S5. Top (a,c) and side (b,d) view for the chemical structure of the 2N and 2P substituted MoS_2 -O₂ complex, violet, yellow, green, red and purple sticks represent Mo, S, N, O and P atoms, respectively.

Fig. S6. The total electronic density of states (TDOS) of the (4×4) N-MoS₂-O₂ complex system and their corresponding PDOS of Mo, N, and O atoms for a spin-up and spin-down states, respectively.

Fig. S7 The (PDOS) of (4×4) P-MoS₂-O₂ complex corresponding Mo, S, P, and O atoms for a spin-up and spin-down states, respectively.

Fig. S8 Top (a,c) and side (b,d) view for a chemical structure of the 2N and 2P substituted MoS₂-NO complex, violet, yellow, green, red and purple sticks represent the Mo, S, N, O and

P atoms, respectively.

Fig. S9. The total electronic density of states (TDOS) of (4×4) N-MoS₂-NO complex and their corresponding PDOS of Mo, N, and O atoms, respectively.

Fig. S10 The total electronic density of states (TDOS) of (4×4) P-MoS₂-NO complex and their corresponding PDOS of Mo, S, P, and O atoms, respectively.