Supporting information

NO_x reduction by CO over ASC catalysts in a simulated rotary reactor: effect of CO₂, H₂O and SO₂

Peiliang Sun^{a,b}, Xingxing Cheng^{a,b,1*}, Yanhua Lai^{b,*}, Zhiqiang Wang^{a,b}, Chunyuan Ma^{a,b}, Jingcai Chang^{a,b}

^a National Engineering Lab for Coal-fired Pollutant Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan, 250061, China

^b School of Energy and Power Engineering, Shandong University, Jinan, 250061, China

^{*} Corresponding Authors. Xingxing Cheng, tel: (86) 531-88399372(615), fax: (86) 531-88385877, email: <u>xcheng@sdu.edu.cn</u>. Yanhua Lai, tel: (86) 531-88392637, email: <u>laiyh@sdu.edu.cn</u>

Fig. S1 The schematic of the fixed bed experimental system

Fig. S2 NO_x adsorption capacity of catalysts at different temperatures in 800 s

Fig. S3 Dimensionless outlet NO_x concentration in the simulated rotary reactor. ((a) T = 200 °C, (b) T = 250 °C)

Fig. S4 Dimensionless outlet NO_x concentration in the simulated rotary reactor. ((a) T = 200 °C, (b) T = 250 °C)

Conditions	Adsorption capacity (mg/g)
Baseline group	0.660
15 % CO ₂	0.580
5 % H ₂ O	0.516
10 % H ₂ O	0.330
10 % H ₂ O + 15 % CO ₂	0.290

Table S1 NO_x adsorption capacity of catalysts under different conditions in 800 s

Table S2 The influence of CO_2 on the NO adsorption and reduction efficiencies

	NO adsorption efficiency		NO reduction efficiency	
	no CO ₂	adding CO ₂	no CO ₂	adding CO ₂
150 °C	87.0%	59.7%	4.4%	3.4%
200 °C	93.4%	87.6%	19.9%	1.2%
250 °C	88.6%	90.8%	32.8%	4.0%

	NO adsorption efficiency		NO reduction efficiency	
	no H ₂ O	adding H ₂ O	no H ₂ O	adding H ₂ O
150 °C	87.0%	39.6%	4.4%	0.1%
200 °C	93.4%	65.9%	19.9%	4.8%
250 °C	88.6%	78.2%	32.8%	24.8%

 Table S3 NO adsorption and reduction efficiencies of catalyst under wet condition

Table S4Influence of SO_2 on NO adsorption and reduction efficiencies

	NO adsorption efficiency		NO reduction efficiency	
	no SO ₂	adding SO ₂ 45 min	no SO ₂	adding SO ₂ 45 min
150 °C	87.0%	37.3%	4.4%	4.2%
200 °C	93.4%	34.9%	19.9%	10.2%
250 °C	88.6%	39.5%	32.8%	11.8%