Electronic Supplementary Information for

Bilayer Graphene/HgCdTe Based Very Long Infrared Photodetector with

Superior External Quantum Efficiency, Responsivity, and Detectivity

Shonak Bansal,^a Kuldeep Sharma, ^a Prince Jain, ^a Neha Sardana,^b Sanjeev Kumar,^c Neena Gupta^a and Arun K. Singh^{a*}

^aDepartment of Electronics and Communication Engineering, Punjab Engineering College (Deemed to be University),

Sector-12, Chandigarh-160012, India

^bDepartment of Metallurgical and Materials Engineering, Indian Institute of Technology, Ropar, India

^cDepartment of Applied Sciences, Punjab Engineering College (Deemed to be University), Sector-12, Chandigarh-

160012, India.

*E-mail: arun@pec.ac.in

Hole and electron effective masses

According to Kane band and Weiler model, the effective mass of hole (m_p^*) and electron (m_n^*) can be estimated by Eqns. S1 and S2, respectively^{1,2}:

(S2)

$$m_p^* = 0.55 * m_0$$
 (S1)

$$m_n^* = \frac{m_0}{\left[-0.6 + 6.333 \left(\frac{2}{E_{gn}(x,T)} + \frac{1}{E_{gn}(x,T) + 1} \right) \right]}$$

where m_0 is the rest mass of electron.

Spectral response

Fig. S1a shows the spectral response of proposed photodetector which is a variation of the source photocurrent (I_s), available photocurrent (I_a) and cathode photocurrent (I_{light}). Here, I_s and I_A represent the rate of incident and absorbed photons, respectively, in the device. Typically, I_A is smaller than that of I_s due to reflection and transmission of illumination from the device. The results demonstrate rapid fall in available photocurrent and cathode current beyond cut-off wavelength, i.e., 20.6 µm for the proposed VLWIR photodetector. The internal quantum efficiency (QE_{int}) and external quantum efficiency (QE_{ext}) are estimated from the following eqns. S3 and S4^{3,4}

$$QE_{int}(\%) = \begin{pmatrix} I_{A} \\ I_{S} \end{pmatrix} \times 100$$

$$QE_{ext}(\%) = \begin{pmatrix} I_{light} \\ I_{S} \end{pmatrix} \times 100$$
(S3)
(S4)

The variation of internal quantum efficiency (QE_{int}) and internal photocurrent responsivity (R_i^{int}) as a function of wavelength at 77 K with a bias of -0.5 V is shown in Fig. S1b.

Fig. S1. (a) The spectral response of the photodetector with $P_{in} = 1$ W/cm² and V = -0.5 V at 77 K. I_5 , I_A , and I_{light} corresponds to source photocurrent, available photocurrent, and cathode photocurrent, respectively. (b) The internal quantum efficiency (QE_{int}), and internal photocurrent responsivity (R_i^{int}) as a function of wavelength with $P_{in} = 1$ W/cm², V = -0.5 V at 77 K. The cut-off wavelength of proposed VLWIR is 20.6 µm. The device exhibits the maximum QE_{int} and maximum R_i^{int} of 99.49% and 13.26 A/W, respectively.

Fig. S2. (a) The specific detectivity (D^*) as a function of wavelength with incident power of 1 W/cm² at 20.6 µm at V = -0.5 V and T = 77 K. The results are well in accordance with the results obtained from analytical model. The maximum D^* of photodetector is ~7.6 × 10¹³ cmHz^{1/2}/W at 20.6 µm wavelength. (b) The D^*_{max} value as a function of applied reverse bias voltage under 20.6 µm IR radiation with an incident power of 1 W/cm² at 77 K. The increase in reverse bias voltage increases the D^*_{max} . (c) The D^*_{max} at V = -0.5 V and T = 77 K of the photodetector as a function of P_{in} . The D^*_{max} value increases linearly with P_{in} . (d) The D^*_{max} value of the photodetector under different temperatures at V = -0.5 V and $P_{in} = 1$ W/cm². The D^*_{max} value decreases with temperature.

Specific detectivity (D*)

The Fig. S2a shows the simulated and analytical results of D^* as a function of wavelength for the proposed BLG/HgCdTe photodetector at -0.5 V bias with an illumination of 20.6 µm at 1 W/cm² and 77 K, whereas, Figs. S2b, S2c and S2d show the maximum D^* (D^*_{max}) with respect to applied reverse bias, different incident power P_{in} and temperature, respectively.

Effect of temperature on external quantum efficiency (QE_{ext})

The QE_{ext} increases with the increase in temperature at a bias of -0.5 V as given in Fig. S3⁺. However, it demonstrates a different behaviour at low temperatures i.e. 30-120 K (in the inset of Fig. S3⁺), and at high temperatures varying from 140 to 250 K. Interestingly, QE_{ext} exceeds more than 100% for temperatures starting from 120 K due to the generation of long lifetime of photo-induced hot carriers (electron-holes) in VLWIR region. The increase in recombination of charge carriers at higher wavelength reduces the flow of photocurrent and hence decreases QE_{ext} as shown in Fig. S3⁺.

Fig. S3. The QE_{ext} as a function of wavelength with an incident power of 1 W/cm² at 20.6 µm for -0.5 V bias at different temperatures varying from 30 to 250 K. The QE_{ext} exceeds 100% for different temperatures from 120 to 250 K due to the generation of long lifetime of photo-induced hot carriers in VLWIR region.

References

- 1 A. Rogalski, Reports on Progress in Physics, 2005, 68, 2267–2336.
- 2 M. H. Weiler, Semiconductors and Semimetals, 2008, 16, 119–191.
- 3 T. Varma, S. Sharma, C. Periasamy and D. Boolchandani, Journal of Nanoelectronics and Optoelectronics, 2015, 10, 1–5.
- 4 S. Sharma, A. Sumathi and C. Periasamy, IETE Technical Review, 2016, 34, 83–90.