1 Supporting Information

2

³ Enhancing antitumor activity of tea polyphenols ⁴ encapsulated in biodegradable nanogels by ⁵ macromolecular self-assembly

6 Chen Liu^a, Zhong Zhang^{a,b*}, Qingjun Kong^a Runguang Zhang^a and Xingbin Yang^{a,*}

7 ^aShaanxi Engineering Laboratory for Food Green Processing and Safety Control,

- 8 College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an
- 9 710119, PR China.
- ¹⁰ ^bSchool of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong,

11 10 Sassoon Road, Pokfulam, Hong Kong, PR China

12

13 * Corresponding author:

- 14 E-mail: zzhang@snnu.edu.cn; Fax: +86 29-85310517; Tel: +86 29-85310517.
- 15 E-mail: xbyang@snnu.edu.cn; Fax: +86 29-85310580; Tel: +86 29-85310580.

Contents

Fig. S1. (A) Mechanism process for free radical damages normal cell. (B) Mechanism of tea polyphenols inducing apoptosis in cancer cells. G_0 : A phase where the cell has left the cycle and has stopped dividing. G_1 : A phase that everything is ready for DNA synthesis. G_2 : During the gap between DNA synthesis and mitosis, the cell will continue to grow. S: DNA replication occurs during this phase. M: Cell growth stops at this stage and cellular energy are focused on the orderly division into two daughter cells.

Fig. S2. SEM images of Ly-CMC COAs and NGs. (A) Ly-CMC COAs in the absence of chitosanase. (B) Ly-CMC COAs in the presence of chitosanase. (C) Ly-CMC NGs in the absence of chitosanase. (D) Ly-CMC NGs in the presence of chitosanase.

Fig. S3. SEM images of Ly-CMC NGs. (A) Ly-CMC NGs after heating. (B) TP-loaded NGs.

Fig. S4. (A) Gauss equation model of Ly-CMC NGs for TP in PBS buffer. (B) Zeroorder equation model of Ly-CMC NGs for TP in PBS buffer.

Fig. S5. Representative HPLC chromatography of TP solution dispersed in 0.1 M phosphate buffer. (A) Free TP without heating. (B) Free TP after heating for 20 min. (C) TP-loaded NGs after heating for 20 min and cultivate for 24h. (D) TP-loaded NGs after heating for 20 min and cultivate for 48h. Detection wavelength is set at 274nm.

Fig. S1. (A) Mechanism process for free radical damages normal cell. (B) Mechanism of tea polyphenols inducing apoptosis in cancer cells. G_0 : A phase where the cell has left the cycle and has stopped dividing. G_1 : A phase that everything is ready for DNA synthesis. G_2 : During the gap between DNA synthesis and mitosis, the cell will continue to grow. S: DNA replication occurs during this phase. M: Cell growth stops at this stage and cellular energy are focused on the orderly division into two daughter cells.

Fig. S2. SEM images of Ly-CMC COAs and NGs. (A) Ly-CMC COAs in the absence of chitosanase. (B) Ly-CMC COAs in the presence of chitosanase. (C) Ly-CMC NGs in the absence of chitosanase. (D) Ly-CMC NGs in the presence of chitosanase

Fig. S3. SEM images of Ly-CMC NGs. (A) Ly-CMC NGs after heating. (B) TP-loaded Ly-CMC NGs.

Fig. S4. (A) Gauss equation model of Ly-CMC NGs for TP in PBS buffer. (B) Zeroorder equation model of Ly-CMC NGs for TP in PBS buffer.

Fig. S5. Representative HPLC chromatography of TP solution dispersed in 0.1 M phosphate buffer. (A) Free TP without heating. (B) Free TP after heating for 20 min. (C) TP-loaded NGs after heating for 20 min and cultivate for 24 h. (D) TP-loaded NGs after heating for 20 min and cultivate for 48h. Detection wavelength is set at 274 nm.