Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

## Luminescence characteristics of rare-earth-doped barium hexafluorogermanate BaGeF<sub>6</sub> nanowires: fast subnanosecond decay time and high sensitivity in H<sub>2</sub>O<sub>2</sub> detection

Gibin George,<sup>a</sup> Machael D. Simpson,<sup>a</sup> Bhoj R. Gautam,<sup>a</sup> Dong Fang,<sup>b</sup> Jinfang Peng,<sup>‡c</sup> Jianguo Wen,<sup>c</sup> Jason E. Davis,<sup>d</sup> Daryush Ila<sup>a</sup> and Zhiping Luo <sup>\*a</sup>

<sup>a</sup> Department of Chemistry and Physics, Fayetteville State University, Fayetteville, NC 28301, USA. E-mail: zluo@uncfsu.edu
 <sup>b</sup> College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
 <sup>c</sup> Centre for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA
 <sup>d</sup> Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN 37830, USA

## Results



**Fig. S1**. SEM images of BGF:2Ce nanowire phosphors revealing the high aspect ratio; at (a) low and (b) high magnifications.

<sup>&</sup>lt;sup>‡</sup> Present address: Southwest Jiaotong University, Chengdu 610031, P. R. China.



**Fig. S2**. Diameter and length distribution of 30 nanowires, corresponding average and standard deviation are in the inset.

| Table S1. | Composition | BGF nanowires | from EDS analy | ysis. |
|-----------|-------------|---------------|----------------|-------|
|-----------|-------------|---------------|----------------|-------|

| Elements | Mass % | Atomic % | Nominal Mass % | Nominal Atomic % |
|----------|--------|----------|----------------|------------------|
|          |        |          |                |                  |
| Ba       | 42.5   | 11.9     | 42.39          | 12.50            |
| Ge       | 19.3   | 10.3     | 22.42          | 12.50            |
| F        | 38.2   | 77.8     | 35.19          | 75.00            |



Fig. S3. EDS spectra of BGF: 1Ce-15Tb-0.5Sm nanowire phosphors.



Fig. S4. TG analysis of pure BGF nanowires



Fig. S5. Mechanism of energy transfer in BGF: xCe-yTb-zSm nanowire phosphors.



Fig. S6. PL emission from the BGF: *x*Ce-10Tb nanowire phosphors under 254 nm excitation.



**Fig. S7**. PL emission from the BGF nanophosphors with high Sm<sup>3+</sup> doping under 254 nm excitation.



Fig. S8. PL emission from the binary doped BGF nanowire phosphors under 254 nm excitation.



**Fig. S9**. Photographs of emission from the nanophosphors under 254 nm excitation (a) BGF:1Ce-10Tb, (b) BGF:1Ce-15Tb, (c) BGF:1Ce-30Tb, (d) BGF:1Ce-15Tb-0.01Sm, (e) BGF:1Ce-15Tb-0.02Sm, (f) BGF:1Ce-15Tb-0.05Sm (g) BGF:1Ce-15Tb-0.1Sm, and (d) BGF:1Ce-15Tb-0.5Sm.



Fig. S10. CIE diagram of codoped BGF nanowire phosphor PL emission.



**Fig. S11**. (a) CIE diagram of BGF: xCe-yTb-zSm nanowire phosphor CL emission, and (b) enlarged view of (a).



**Fig. S12**. PL response of nanowires towards  $H_2O_2$  concentration, (a) BaGeF<sub>6</sub> nanowires codoped with 1 mol.% Ce<sup>3+</sup> and 30 mol.% Tb<sup>3+</sup>, (b) (a) BaSiF<sub>6</sub> nanowires codoped with 1 mol.% Ce<sup>3+</sup> and 30 mol.% Tb<sup>3+</sup>, (c) (a) BaSiF<sub>6</sub> nanowires codoped with 1 mol.% Ce<sup>3+</sup>, 30 mol.% Tb<sup>3+</sup>, and 1 mol.% Eu<sup>3+</sup>, and (d) comparison of calibration curves.

| Con. H <sub>2</sub> O <sub>2</sub> | I/I <sub>0</sub> |            | Residual values |  |
|------------------------------------|------------------|------------|-----------------|--|
| (µM)                               | Observed         | Calculated |                 |  |
| 25                                 | 0.91892          | 0.89159    | 0.02733         |  |
| 50                                 | 0.81081          | 0.76411    | 0.0467          |  |
| 100                                | 0.66622          | 0.63662    | 0.02959         |  |
| 200                                | 0.43514          | 0.50914    | -0.074          |  |
| 300                                | 0.35541          | 0.43457    | -0.07916        |  |
| 500                                | 0.30541          | 0.34061    | -0.03521        |  |
| 1000                               | 0.22432          | 0.21313    | 0.01119         |  |
| 2000                               | 0.11216          | 0.08565    | 0.02652         |  |
| 3000                               | 0.05811          | 0.01107    | 0.04704         |  |

Table S2. The observed, calculated and residual values of the fit in Fig. 10a inset.

**Table S3**. The observed, calculated and residual values of the fit in Fig. 10b.

|      | Con. H <sub>2</sub> O <sub>2</sub> | Quenching Efficiency (%) |            | Residual values |  |
|------|------------------------------------|--------------------------|------------|-----------------|--|
| (µM) |                                    | Observed                 | Calculated |                 |  |
|      | 25                                 | 8.10811                  | 10.84097   | -2.73286        |  |
|      | 50                                 | 18.91892                 | 23.58936   | -4.67044        |  |
|      | 100                                | 33.37838                 | 36.33775   | -2.95937        |  |
|      | 200                                | 56.48649                 | 49.08614   | 7.40035         |  |
|      | 300                                | 64.45946                 | 56.54347   | 7.91599         |  |
|      | 500                                | 69.45946                 | 65.9386    | 3.52086         |  |
|      | 1000                               | 77.56757                 | 78.68699   | -1.11942        |  |
|      | 2000                               | 88.78378                 | 91.43538   | -2.65159        |  |
|      | 3000                               | 94.18919                 | 98.89271   | -4.70352        |  |
|      |                                    |                          |            |                 |  |