Synthesis of novel cyclodextrin modified reduced graphene oxide composites by simple hydrothermal method

Qingli Huang ${ }^{1,2}$, MingYan Li ${ }^{1}$, LiLi Wang ${ }^{2}$, Honghua Yuan ${ }^{2}$, Meng Wang ${ }^{2}$, Yongping Wu ${ }^{\text {* }}$ and Ting Li ${ }^{2 *}$

we measured the photothermal conversion efficiency (η) of rGO@CD. The η value was calculated as follows:
$\eta=\mathrm{hS}\left(\Delta \mathrm{T}_{\text {max }}-\Delta \mathrm{T}_{\text {maxs }}\right) / \mathrm{I}\left(1-10^{-\mathrm{A}}\right)(1)$ and $\mathrm{hS}=\mathrm{m}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}} / \tau(2)$
where η is the photothermal conversion efficiency. $\Delta \mathrm{T}_{\text {max }}$ is the temperature change of the rGO@CD solution at the maximum steady-state temperature, $\Delta \mathrm{T}_{\text {maxs }}$ is the temperature change of solvent at the maximum steady-state temperature. I is the laser power, A is the absorbance of rGO@CD at 808 nm . Cs and m_{s} is the heat capacity and mass of solvent, respectively. τ is the time constant, which is can be determined by the linear curve fitting of temperature cooling time vs its $\ln (\theta),\left(\theta=\Delta T / \Delta T_{\max }\right)$.

[^0]

Fig S1. TEM images of rGO@CD in 6 days at different pH (a) 2 days at pH 7.4 (b) 6 days at pH 7.4 (c) 2 days at pH 5.0 (d) 6 days at pH 5.0

FigS2. The photothermal response of rGO@CD under the NIR irradiation condition (808 nm, continuous wave, $1 \mathrm{~W}, 300 \mathrm{~s}$), then the laser was turn off.

Fig.S3 UV-Vis spectrum of rGO@CD.

Fig.S4 Linearity curves fitted from the temperature cooling time vsln (θ) of $\mathrm{rGO} @ \mathrm{CD}(100$ $\mu \mathrm{g} / \mathrm{mL})$.

(c)

Fig.S5 Intracellular DOX release in SKOV3 cell for different incubating times with $100 \mu \mathrm{~g} / \mathrm{mL}$ rGO@CD@PEG@FA@DOX by cell fluorescence imaging (a) 1h (b) 3h (c) 6h.

[^0]: * To whom correspondence should be addressed. Fax: ++86-516-83262091.

 E-mail: 100002016057@xzhmu.edu.cn, wyp@xzhmu.edu.cn

