Enantioselective Michael Addition of Malonates to α,β-Unsaturated Ketones Catalyzed by 1,2-Diphenylethanediamine

Wei Wang, a Ling Ye, b Zhichuan Shi, a Zhigang Zhaoa and Xuefeng Li*a

^a College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China.

^b Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.

E-mail: lixuefeng@swun.edu.cn.

Table of contents:

1. General methods	2
2. Table S1 Optimization of reaction conditions. ^a	2
3. General procedure for synthesis of racemic adducts 3 and 5	3
4. General procedure for the asymmetric Michael reaction of cinnamones	3
5. General procedure for the asymmetric Michael reaction of chalcones	9
6. General procedure for synthesis of racemic adducts 6a-6f	12
7. General procedure for the synthesis of cyclohexenone 6a-6f	12
8. Synthetic transformation of adduct 5a	15
9. General procedure for decarboxylation of 6a	17
10. Reference	17
11. NMR spectra and HPLC chromatograms	19

1. General methods

¹H and ¹³C NMR spectra were recorded on Varian 400 MHz spectrometers. Chemical shifts (δ) are reported in ppm and calibrated from residual solvent signal. Coupling constants (*J*) are given in Hz. ESI-HRMS spectrometer was measured with a Bruker Daltonics LCQ^{DECA} ion trap mass spectrometer. Enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AS-H, AD-H, OD-H, OJ-H and IC columns in comparison with the authentic racemates. Optical rotation data were recorded on Rudolph Autopol I automatic polarimeter. Commercial grade solvents were dried and purified by standard procedures. All other reagents were purchased from commercial sources and were used without further purification. PE = petroleum ether.

 \cap

Ph	0 Me ⁺ Ph 1b	0 0 OEt 2f	(<i>R, R</i>)-DPEN (20 r additive (30 mol solvent, rt, 120	nol%) %) h Ph	Ph
Entry	Additive	Solvent	Yield (%) ^b	dr ^c	ee (%) ^d
1e	SA	DCE	95	52/48	91/82
2	SA	DCE	90	60/40	91/94
3	TFA	DCE	96	61/39	94/94
4	BA	DCE	83	58/42	82/95
5	o-Phthalic acid	DCE	93	55/45	90/91
6	OFBA	DCE	91	55/45	92/93
7	TFA	THF	92	55:45	92/96
8	TFA	CHCl ₃	97	77:23	96/97
9	TFA	МеОН	96	72:28	82/95
10	TFA	EtOH	98	58:42	90/94

2. Table S1 Optimization of reaction conditions.^a

^a Unless otherwise noted, the reaction was performed with 0.2 mmol of **1b**, 0.4 mmol of malonate **2f**, 20 mol% (*R*, *R*)-DPEN, 30 mol% additive in 1 mL of solvent at room temperature for 120 h. TFA = trifluoroacetic acid, BA = benzoic acid, OFBA = *o*-fluorobenzoic acid, SA = salicylic acid. ^b Isolated yield after flash chromatography on silica gel. ^c Diastereomeric ratio (dr) was determined by ¹H NMR analysis of the crude mixture. ^d Determined by chiral stationary-phase HPLC. ^e Carried out with 40 mol% of SA.

3. General procedure for synthesis of racemic adducts 3 and 5

Enone (0.20 mmol) and K_2CO_3 (27.6 mg, 0.2 mmol) were dissolved in EtOH (1 mL). Malonate **2** (2 mmol) was added, and reaction stirred at room temperature until completion (monitored by TLC). The mixture was directly purified by flash chromatography (eluents from PE/ EtOAc) to give racemic products.

4. General procedure for the asymmetric Michael reaction of cinnamones

DPEN (8.5 mg, 0.04 mmol), cinnamones **1** (0.2 mmol), malonate **2** (4.0 mmol), and *o*-phthalic acid (13.3 mg, 0.08 mmol) were dissolved in ethanol (1 mL). After stirred at rt for 168 h, the reaction mixture was purified by flash chromatography on silica gel (PE/EtOAc).

Diethyl 2-(1-(naphthalen-2-yl)-3-oxobutyl)malonate (3aa):²² TLC (PE/EtOAc = 10:1); yellow oil; 95% yield, 94% ee; HPLC: AS-H column, hexane/*i*-propanol (90/10), 1.0 mL/min, UV 210 nm, $t_{maior} =$

13.103 min, $t_{minor} = 16.187$ min; $[\alpha]_D^{25} = +5.9^\circ$ (c = 0.538, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.78-7.76$ (m, 3H), 7.70 (s, 1H), 7.46-7.39 (m, 3H), 4.20 (q, J = 7.2 Hz, 2H), 4.17-4.13 (m, 1H), 3.93-3.87 (m, 2H), 3.81 (d, J = 10.0 Hz, 1H), 3.03 (d, J = 6.8 Hz, 2H), 2.02 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H), 0.93 (t, J = 7.2 Hz, 3H).

Diethyl 2-(3-oxo-1-phenylbutyl)malonate (3ab):^{8a} TLC (PE/EtOAc = 10:1); yellow oil; 75% yield, 91% ee; HPLC: AD-H column, hexane/*i*-propanol (80/20), 1.0 mL/min, UV 254 nm, $t_{minor} = 6.187 \text{ min}, t_{major} = 8.570 \text{ min}; [\alpha]_D^{25} = +11.4^{\circ} (c = 0.792, CHCl_3); ^1H NMR (CDCl_3, 400 MHz) \delta =$

7.29-7.23 (m, 4H), 7.21-7.18 (m, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.99-3.97 (m, 1H), 3.94 (q, J = 7.2 Hz, 2H), 3.69 (d, J = 9.6 Hz, 1H), 2.96 (ABX, $J_{AB} = 16.4$ Hz, $J_{BX} = 5.2$ Hz, 1H), 2.91 (ABX, $J_{AB} = 16.6$ Hz, $J_{AX} = 8.6$ Hz, 1H), 2.02 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H), 1.01 (t, J = 7.2 Hz, 3H).

Diethyl 2-(1-(4-fluorophenyl)-3-oxobutyl)malonate (3ac): TLC (PE/EtOAc = 15:1); yellow oil; 99% yield, 95% ee; HPLC: AD-H column, hexane/*i*-propanol (80/20), 1.0 mL/min, UV 210 nm, $t_{minor} = 6.983 \text{ min}, t_{major} = 12.983 \text{ min}; [\alpha]_D^{25} = +18.0^{\circ} (c = 1.276, CHCl_3); ^1H$

NMR (CDCl₃, 400 MHz) δ = 7.20 (dd, J = 8.6, 5.4 Hz, 2H), 6.93 (t, J = 8.8 Hz, 2H), 4.16 (dq, J

= 7.2, 1.2 Hz, 2H), 3.96-3.91 (m, 3H), 3.64 (d, J = 10.0 Hz, 2H), 2.93 (ABX, $J_{AB} = 17.0$ Hz, $J_{BX} = 4.6$ Hz, 1H), 2.86 (ABX, $J_{AB} = 17.0$ Hz, $J_{AX} = 8.2$ Hz, 1H), 2.00 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H), 1.01 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 205.7$, 167.9, 167.5, 161.7 (d, ¹ $J_{CF} = 244.2$ Hz), 136.1 (d, ³ $J_{CF} = 13.2$ Hz), 129.7 (d, ⁴ $J_{CF} = 8.0$ Hz), 115.2 (d, ² $J_{CF} = 21.2$ Hz), 61.6, 61.3, 57.2, 47.3, 39.6, 30.2, 13.9, 13.7; ESI-HRMS: m/z [M+H]⁺ calcd for C₁₇H₂₂FO₅ 325.1446; found 325.1448.

Diethyl 2-(1-(2-chlorophenyl)-3-oxobutyl)malonate (3ad): TLC (PE/EtOAc = 15:1); yellow oil; 99% yield, 96% ee; HPLC: AD-H column, hexane/*i*-propanol (80/20), 1.0 mL/min, UV 210 nm, $t_{minor} = 6.577$ min, $t_{major} = 12.770$ min; $[\alpha]_D^{25} = +12.9^\circ$ (c = 0.448, CHCl₃); ¹H NMR (CDCl₃,

400 MHz) δ = 7.33 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.25 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.17 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.13 (dt, *J* = 7.4, 1.6 Hz, 1H), 4.43 (pseudo q, *J* = 7.5 Hz,2H), 4.18-4.11 (m, 2H), 4.00 (q, *J* = 7.2 Hz, 2H), 3.94 (d, *J* = 9.2 Hz, 1H), 3.07 (ABX, *J*_{AB} = 17.0 Hz, *J*_{BX} = 7.8 Hz, 1H), 3.15 (ABX, *J*_{AB} = 17.0 Hz, *J*_{AX} = 5.4 Hz, 1H), 2.06 (s, 3H), 1.21 (t, *J* = 7.2 Hz, 3H), 1.07 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 205.9, 168.0, 167.6, 137.7, 133.9, 130.0, 129.3, 128.3, 126.8, 61.5, 61.4, 55.1, 45.5, 36.9, 29.9, 13.9, 13.7; ESI-HRMS: *m/z* [M+H]⁺ calcd for C₁₇H₂₂³⁵ClO₅ 341.1150; found 341.1158; calcd for C₁₇H₂₂³⁷ClO₅ 343.1121; found 343.1127.

NMR (CDCl₃, 400 MHz) δ = 7.23 (s, 1H), 7.21-7.14 (m, 3H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.98 (q, *J* = 7.2 Hz, 2H), 3.95-3.92 (m, 1H), 3.66 (d, *J* = 9.6 Hz, 1H), 2.97 (ABX, *J*_{AB} = 17.2 Hz, *J*_{BX} = 4.8 Hz, 1H), 2.90 (ABX, *J*_{AB} = 17.0 Hz, *J*_{AX} = 9.0 Hz, 1H), 2.05 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.05 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 205.4, 167.9, 167.4, 142.6, 134.1, 129.6, 128.2, 127.3, 126.5, 61.7, 61.4, 56.9, 46.9, 39.8, 30.2, 13.9, 13.7; ESI-HRMS: *m*/*z* [M+H]⁺ calcd for C₁₇H₂₂³⁵ClO₅ 341.1150; found 341.1158; calcd for C₁₇H₂₂³⁷ClO₅ 343.1121; found 341.1128.

column, hexane/*i*-propanol (80/20), 1.0 mL/min, UV 210 nm, $t_{minor} = 9.573$ min, $t_{major} = 13.543$ min; $[\alpha]_D^{25} = +12.9^{\circ}$ (c = 0.448, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) $\delta = 7.22$ (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 4.17 (pseudo q, J = 7.1 Hz, 2H), 3.95 (q, J = 7.1 Hz, 2H), 3.92-3.90 (m, 1H), 3.64 (d, J = 9.6 Hz, 1H), 2.94 (ABX, $J_{AB} = 17.0$ Hz, $J_{BX} = 4.6$ Hz, 1H), 2.86 (ABX, $J_{AB} = 17.0$ Hz, $J_{AX} = 9.0$ Hz, 1H), 2.01 (s, 3H), 1.23 (t, J = 7.0 Hz, 3H), 1.03 (t, J = 7.0 Hz, 3H).

Diethyl 2-(1-(4-bromophenyl)-3-oxobutyl)malonate (3ag):^{2b} TLC (PE/EtOAc = 15:1); yellow oil; 70% yield, 93% ee; HPLC: AD-H column, hexane/*i*-propanol (80/20), 1.0 mL/min, UV 254 nm, $t_{minor} =$ 7.467 min, $t_{major} = 10.760$ min; $[\alpha]_D^{25} = +12.2^\circ$ (c = 0.574, CHCl₃); ¹H

NMR (CDCl₃, 400 MHz) δ = 7.37 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 4.16 (dq, *J* = 7.1, 2.0 Hz, 2H), 3.94 (q, *J* = 7.1 Hz, 2H), 3.92-3.89 (m, 1H), 3.64 (d, *J* = 10.0 Hz, 1H), 2.93 (ABX, J_{AB} = 17.2 Hz, J_{BX} = 4.8 Hz, 1H), 2.93 (ABX, J_{AB} = 17.0 Hz, J_{AX} = 9.0 Hz, 1H), 2.01 (s, 3H), 1.23 (t, *J* = 7.0 Hz, 3H), 1.02 (t, *J* = 7.0 Hz, 3H).

Diethyl 2-(3-oxo-1-(p-tolyl)butyl)malonate (3ah):^{2b} TLC (PE/EtOAc = 15:1); yellow oil; 85% yield, 94% ee; HPLC: AD-H column, hexane/*i*-propanol (90/10), 1.0 mL/min, UV 210 nm, $t_{minor} =$ 9.710 min, $t_{major} = 14.570$ min; $[\alpha]_D^{25} = +7.3^\circ$ (c = 0.900, CHCl₃); ¹H

NMR (CDCl₃, 400 MHz) δ = 7.11 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.94 (q, *J* = 7.2 Hz, 2H), 3.92-3.88 (m, 1H), 3.65 (d, *J* = 10.0 Hz, 1H), 2.93 (ABX, *J*_{AB} = 16.4 Hz, *J*_{BX} = 5.2 Hz, 1H), 2.87 (ABX, *J*_{AB} = 16.4 Hz, *J*_{AX} = 8.4 Hz, 1H), 2.27 (s, 3H), 2.00 (s, 3H), 1.24 (t, *J* = 7.0 Hz, 3H), 1.02 (t, *J* = 7.2 Hz, 1H).

0.702, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ = 7.14 (d, *J* = 8.4 Hz, 2H), 6.78 (d, *J* = 8.4 Hz, 2H), 4.17 (pseudo q, *J* = 7.2 Hz,2H), 3.93 (q, *J* = 7.2 Hz, 2H), 3.89-3.87 (m, 1H), 3.74 (s, 3H), 3.63 (d, *J* = 10.0 Hz, 1H), 2.90 (ABX, *J*_{AB} = 16.8 Hz, *J*_{BX} = 5.2 Hz, 1H), 2.90 (ABX, *J*_{AB} = 16.8 Hz, *J*_{BX} = 9.2 Hz, 1H), 2.00 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.02 (t, *J* = 7.2 Hz, 1H).

Diethyl 2-(1-(naphthalen-1-yl)-3-oxobutyl)malonate (3aj):²² TLC (PE/EtOAc = 15:1); yellow oil; 97% yield, 96% ee; HPLC: AD-H column, hexane/*i*-propanol (80/20), 1.0 mL/min, UV 254 nm, $t_{minor} = 6.980$ min, $t_{major} = 9.190$ min; $[\alpha]_D^{25} = -3.9^\circ$ (c = 0.134, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) $\delta = 8.31$ (d, J = 8.4 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.72-7.70 (m,

1H), 7.57 (t, J = 7.2 Hz, 1H), 7.47 (t, J = 7.4 Hz, 1H), 7.41-7.38 (m, 2H), 4.95-4.94 (m, 1H), 4.16 (dq, J = 7.2, 2.0 Hz, 2H), 3.94 (d, J = 8.4 Hz, 1H), 3.85 (q, J = 7.2 Hz, 2H), 3.18 (ABX, $J_{AB} = 17.2$ Hz, $J_{BX} = 5.6$ Hz, 1H), 3.11 (ABX, $J_{AB} = 17.4$ Hz, $J_{BX} = 7.8$ Hz, 1H), 2.01 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 7.2 Hz, 3H).

EtO₂C CO₂Et Diethyl 2-(1-(furan-2-yl)-3-oxobutyl)malonate (3ak):²² TLC (PE/EtOAc = 25:1); yellow oil; 84% yield, 86% ee; HPLC: OJ-H column, hexane/*i*-propanol (90/10), 1.0 mL/min, UV 210 nm, t_{minor} = 13.337 min, t_{major} = 16.950 min; $[\alpha]_D^{25} = +3.8^{\circ}$ (c = 0.338, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) $\delta = 7.28$ (dd, J = 1.8, 0.6 Hz, 1H), 6.23 (dd, J = 3.2, 1.6 Hz, 1H), 6.09 (d, J = 3.2 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 4.08 (q, J = 7.2 Hz, 2H), 4.10-4.05 (m, 1H), 3.76 (d, J = 8.0 Hz, 1H), 2.99 (ABX, $J_{AB} = 17.2$ Hz, $J_{BX} = 8.8$ Hz, 1H), 2.91 (ABX, $J_{AB} = 17.2$ Hz, $J_{AX} = 4.8$ Hz, 1H), 2.10 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H), 1.16 (t, J = 7.0 Hz, 3H).

3.33 (d, *J* = 6.8 Hz, 1H), 2.79-2.72 (m, 1H), 2.67 (dd, *J* = 17.2, 4.4 Hz, 1H), 2.40 (dd, *J* = 17.0, 8.2 Hz, 1H), 2.12 (s, 3H), 1.25 (t, *J* = 7.0 Hz, 6H), 1.00 (d, *J* = 6.8 Hz, 3H).

EtO₂C CO₂Et Diethyl 2-(2-oxooctan-4-yl)malonate (3an):^{6b} TLC (PE/EtOAc = 20:1); n-Bu Me Diethyl 2-(2-oxooctan-4-yl)malonate (3an):^{6b} TLC (PE/EtOAc = 20:1); yellow oil; 65% yield, 95% ee; HPLC: IC-H column, hexane/*i*-propanol (1/30), 0.8 mL/min, UV 220 nm, t_{major} = 10.803 min; t_{minor} = 12.127min ; [α]_D²⁵ = +7.4° (*c* = 0.940, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ = 4.17 (q, *J* = 7.2 Hz, 4H), 3.52 (d, *J* = 5.6 Hz, 1H), 2.74 (ABX, *J*_{AB} = 17.2 Hz, *J*_{BX} = 5.2 Hz, 1H), 2.66 (pseudo q, *J* = 6.0 Hz, 1H), 2.51 (dd, *J*_{AB} = 17.2 Hz, *J*_{AX} = 6.8 Hz, 1H), 2.13 (s, 3H), 1.42-1.24 (m, 6H), 1.26 (t, *J* = 7.0 Hz, 6H), 0.87 (t, *J* = 6.8 Hz, 3H).

Diethyl 2-(3-oxo-1-phenylpentyl)malonate (3ao):^{6b} TLC (PE/EtOAc = 20:1); yellow oil; 61% yield, 91% ee; HPLC: IC-H column, hexane/*i*-propanol (90/10), 1.0 mL/min, UV 210 nm, $t_{minor} = 10.220$ min; $t_{major} = 18.073$ min; $[\alpha]_D^{25} = +4.4^\circ$ (c = 0.450, CHCl₃); ¹H NMR (CDCl₃, 400 MHz)

δ = 7.28-7.22 (m, 4H), 7.21-7.17 (m, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 4.02-3.96 (m, 1H), 3.94 (q, *J* = 7.0 Hz, 2H), 3.70 (d, *J* = 10.0 Hz, 1H), 2.90 (d, *J* = 6.8 Hz, 2H), 2.39-2.29 (m, 1H), 2.27-2.17 (m, 1H), 1.25 (t, *J* = 7.0 Hz, 3H), 1.00 (t, *J* = 7.0 Hz, 3H), 0.91 (t, *J* = 7.4 Hz, 3H).

Diethyl 2-(3-oxocyclohexyl)malonate (3ap):^{6b} TLC (PE/EtOAc = 25:1); colorless oil; 71% yield, 82% ee; HPLC: IE-H column, hexane/*i*-propanol (90/10), 1.0 mL/min, UV 210 nm, $t_{major} = 48.540$ min; $t_{minor} = 58.187$ min; [α]_D²⁵ = +2.8° (*c* = 0.216, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ = 4.18 (q, J = 7.0 Hz, 2H), 4.17 (q, J = 7.0 Hz, 2H), 3.26 (d, J = 8.0 Hz, 1H), 2.54-2.45 (m, 1H), 2.39 (pseudo t, J = 16.0 Hz, 2H), 2.27-2.22 (m, 2H), 2.07-2.02 (m, 1H), 1.93 (pseudo d, J = 12.8 Hz, 1H), 1.71-1.61 (m, 1H), 1.53-1.3 (m, 1H), 1.24 (t, J = 7.2 Hz, 6H).

Diethyl 2-(3-oxocycloheptyl)malonate (3aq):^{6b} TLC (PE/EtOAc = 10:1); CO₂Et yellow oil; 97% yield, 87% ee; HPLC: IE-H column, hexane/*i*-propanol CO₂Et (80/20), 0.75 mL/min, UV 254 nm, $t_{major} = 11.747$ min, $t_{minor} = 12.743$ min; [α]_D²⁵ = +17.7° (*c* = 0.260, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) = 4.15 (q, *J* = 7.2 Hz, 4H), 3.26 (d, *J* = 5.6 Hz, 1H), 2.57–2.39 (m, 5H), 1.92-1.81 (m, 3H), 1.60–1.34 (m, 3H), 1.22 (t, *J* = 7.2 Hz, 6H).

Dimethyl 2-(1-(naphthalen-2-yl)-3-oxobutyl)malonate (3ba): TLC (PE/EtOAc = 20:1); colorless oil; 81% yield, 90% ee; HPLC: AS-H column, hexane/*i*-propanol (80/20), 1.0 mL/min, UV 254 nm, $t_{major} =$ 12.603 min, $t_{minor} = 16.100$ min; $[\alpha]_D^{25} = -9.0^\circ$ (c = 0.678, CHCl₃). ¹H

NMR (CDCl₃, 400 MHz) δ = 7.79-7.77 (m, 3H), 7.69 (s, 1H), 7.47-7.42 (m, 2H), 7.38 (dd, *J* = 8.4, 1.6 Hz, 1H), 4.19-4.14 (m, 1H), 3.86 (d, *J* = 9.6 Hz, 1H), 3.73 (s, 3H), 3.46 (s, 3H), 3.05 (d, *J* = 6.8 Hz, 2H), 2.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 205.9, 168.5, 167.9, 137.9, 133.2, 132.5, 128.3, 127.8, 127.5, 126.8, 126.1, 125.9, 125.8, 57.0, 52.6, 52.4, 47.1, 40.4, 30.3; ESI-HRMS: *m*/*z* [M+H]⁺ calcd for C₁₉H₂₁O₅ 329.1384; found 329.1389.

Diisopropyl 2-(1-(naphthalen-2-yl)-3-oxobutyl)malonate (3ca): TLC (PE/EtOAc = 25:1); colorless oil; 65% yield, 93% ee; HPLC: AS-H column, hexane/*i*-propanol (90/10), 1.0 mL/min, UV 210 nm, $t_{major} = 7.893$ min, $t_{minor} = 9.663$ min; $[\alpha]_D^{25} = -18.2^\circ$ (c = 1.324,

CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ = 7.78-7.75 (m, 3H), 7.69 (s, 1H), 7.44-7.39 (m, 3H), 5.07 (sep, *J* = 6.4 Hz, 1H), 4.73 (sep, *J* = 6.4 Hz, 1H), 4.16-4.10 (m, 1H), 3.76 (d, *J* = 10.0 Hz, 1H), 3.01 (d, *J* = 6.4 Hz, 2H), 2.01 (s, 3H), 1.24 (d, *J* = 6.4 Hz, 6H), 0.99 (d, *J* = 6.4 Hz, 3H), 0.88 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 206.0, 167.7, 167.1, 137.9, 133.2, 132.5, 128.1, 127.7, 127.5, 127.2, 126.2, 125.9, 125.7, 69.2, 68.8, 57.6, 47.6, 40.4, 30.3, 21.6, 21.5, 21.3, 21.2; ESI-HRMS: *m/z* [M+H]⁺ calcd for C₂₃H₂₉O₅ 385.2010; found 385.2003.

Dibenzyl 2-(1-(naphthalen-2-yl)-3-oxobutyl)malonate (3da):^{8a} TLC (PE/EtOAc = 25:1); yellow oil; 92% yield, 74% ee; HPLC: AS-H column, hexane/*i*-propanol (90/10), 1.0 mL/min, UV 210 nm, $t_{major} = 25.450 \text{ min}, t_{minor} = 33.790 \text{ min}; [\alpha]_D^{25} = +33.9^{\circ}$ (*c* = 0.106,

CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ = 7.69 (dd, *J* = 5.8 , 3.4 Hz, 1H), 7.64-7.62 (m, 2H), 7.57 (s, 1H), 7.36 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.27-7.16 (m, 6H), 7.10 (t, *J* = 7.4 Hz, 1H), 7.00 (t, *J* = 7.6 Hz, 2H), 6.82 (d, *J* = 7.6 Hz, 2H), 5.08 (AB, *J* = 12.8 Hz, 1H), 5.05 (AB, *J* = 13.6 Hz, 1H), 4.77 (AB, *J* = 12.0 Hz, 1H), 4.74 (AB, *J* = 12.8 Hz, 1H), 4.10 (dt, *J* = 9.0, 5.2 Hz, 1H), 3.86 (d, *J* = 9.6

Hz, 1H), 2.92 (ABX, J_{AB} = 17.2 Hz, J_{BX} = 9.2 Hz, 1H), 2.85 (ABX, J_{AB} = 17.2 Hz, J_{BX} = 5.2 Hz, 1H), 1.87 (s, 3H).

CHCl₃); ¹H NMR (CDCl₃, 400 MHz) = 7.78-7.73 (m, 3H), 7.66 (s, 1H), 7.47–7.40 (m, 2H), 7.34 (d, J = 8.6 Hz, 1H), 4.27–4.20 (m, 2H), 4.17 (d, J = 11.5 Hz, 1H), 4.13–4.05 (m, 2H), 3.29 (ABX, $J_{AB} = 17.0$ Hz, $J_{BX} = 10.8$ Hz, 1H), 3.09 (ABX, $J_{AB} = 17.0$ Hz, $J_{AX} = 1.6$ Hz, 1H), 2.03 (s, 3H), 1.40 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 206.3$, 171.4, 171.3, 136.5, 133.1, 132.6, 128.4, 127.81, 127.80, 127.5, 127.2, 126.0, 125.8, 61.49, 61.44, 57.8, 46.2, 45.2, 30.2, 19.1, 13.99, 13.94; ESI-HRMS: m/z [M+H]⁺ calcd for C₂₂H₂₇O₅ 371.1853; found 371.1855.

5. General procedure for the asymmetric Michael reaction of chalcones

DPEN (8.5 mg, 0.04 mmol), chalcones **4** (0.2 mmol), diethyl malonate **2a** (0.6 mL, 4.0 mmol), and salicylic acid (11.0 mg, 0.08 mmol) were dissolved in ether (1mL). After stirred at rt for 168 h, the reaction mixture was purified by flash chromatography on silica gel (PE/EtOAc).

Diethyl 2-(3-oxo-1,3-diphenylpropyl)malonate (5a):^{6d} TLC (PE/EtOAc = 20:1); yellow oil; 75% yield, 92% ee; HPLC: AD-H column, hexane/*i*-propanol (80/20), 1.0 mL/min, UV 254 nm, $t_{minor} = 11.973 \text{ min}, t_{major} = 20.873 \text{ min}; [\alpha]_D^{25} = +12.6^{\circ} (c = 0.634, CHCl_3); ^1H$

NMR (CDCl₃, 400 MHz) δ = 7.90 (d, *J* = 7.6 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.26-7.22 (m, 4H), 7.17 (t, *J* = 6.6 Hz, 1H), 4.24-4.16 (m, 3H), 3.96 (q, *J* = 7.2 Hz, 2H), 3.83 (d, *J* = 10.0 Hz, 1H), 3.55 (ABX, *J*_{AB} = 16.4 Hz, *J*_{AX} = 4.4 Hz, 1H), 3.46 (ABX, *J*_{AB} = 16.4 Hz, *J*_{AX} = 9.2 Hz, 1H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.01 (t, *J* = 7.2 Hz, 3H).

Diethyl 2-(3-oxo-3-phenyl-1-(p-tolyl)propyl)malonate (5b):^{6e} TLC (PE/EtOAc = 20:1); yellow oil; 98% yield, 98% ee; HPLC: AD-H column, hexane/*i*-propanol (70/30), 1.0 mL/min, UV 254 nm, $t_{minor} = 9.660 \text{ min}$, $t_{major} = 16.310 \text{ min}$; $[\alpha]_D^{25} = +16.6^\circ$ (c = 0.626, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) $\delta = 7.89$ (d, J = 7.6 Hz, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.14 (d, J = 7.6 Hz, 2H), 7.04 (d, J = 7.6 Hz, 2H), 4.21-4.12 (m, 3H), 3.96 (q, J = 7.2 Hz, 2H), 3.80 (d, J = 9.6 Hz, 1H), 3.53 (ABX, $J_{AB} = 16.6$ Hz, $J_{AX} = 4.2$ Hz, 1H), 3.42 (ABX, $J_{AB} = 16.4$ Hz, $J_{AX} = 9.2$ Hz, 1H), 2.25 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H).

Diethyl 2-(1-(4-chlorophenyl)-3-oxo-3-phenylpropyl)malonate (5c):^{6e} TLC (PE/EtOAc = 20:1); yellow oil; 99% yield, 94% ee; HPLC: AD-H column, hexane/*i*-propanol (70/30), 1.0 mL/min, UV 254 nm, $t_{minor} = 10.473$ min, $t_{major} = 21.103$ min; $[\alpha]_D^{25} =$

+26.3° (c = 0.3, CHCl₃). ¹H NMR (CDCl₃, 400 MHz) $\delta = 7.89$ (d, J = 8.0 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.21 (pseudo s, 4H), 4.21-4.14 (m, 3H), 3.98 (q, J = 7.2 Hz, 2H), 3.78 (d, J = 9.6 Hz, 1H), 3.53 (ABX, $J_{AB} = 16.8$ Hz, $J_{BX} = 4.0$ Hz, 1H), 3.43 (ABX, $J_{AB} = 16.8$ Hz, $J_{AX} = 9.6$ Hz, 1H), 1.24 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H).

Diethyl 2-(1-(naphthalen-2-yl)-3-oxo-3-phenylpropyl)malonate (5d):^{5a} TLC (PE/EtOAc =

20:1); yellow oil; 88% yield, 94% ee; HPLC: AD-H column, hexane/*i*-propanol (70/30), 1.0 mL/min, UV 254 nm, $t_{minor} =$ 12.440 min, $t_{major} = 20.463$ min; $[\alpha]_D^{25} = +9.8^{\circ}$ (c = 0.468, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ = 7.90 (d, *J* = 7.6 Hz, 2H), 7.76-7.73 (m, 3H), 7.70 (s, 1H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.46-7.39 (m, 5H), 4.37 (dt, *J* = 9.0, 5.2 Hz, 1H), 4.27-4.15 (m, 2H), 3.95-3.89 (m, 3H), 3.64 (ABX, *J*_{AB} = 16.4 Hz, *J*_{BX} = 4.4 Hz, 1H), 3.58 (ABX, *J*_{AB} = 16.6 Hz, *J*_{BX} = 8.2 Hz, 1H), 1.24 (t, *J* = 7.2 Hz, 3H), 0.94 (t, *J* = 7.2 Hz, 3H).

Diethyl 2-(3-oxo-3-phenyl-1-(thiophen-3-yl)propyl)malonate (5e):^{5a} TLC (PE/EtOAc = 15:1); yellow oil; 83% yield, 65% ee; HPLC: AD-H column, hexane/*i*-propanol (70/30), 1.0 mL/min, UV 254 nm, $t_{minor} =$ 8.923 min, $t_{maior} = 12.197$ min; $[\alpha]_D^{25} = +17.9^\circ$ (c = 0.876, CHCl₃); ¹H

NMR (400 MHz, CDCl₃) δ = 7.93 (d, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.12 (d, *J* = 4.8 Hz, 1H), 6.92 (d, *J* = 2.4 Hz, 1H), 6.85 (dd, *J* = 5.2, 3.6 Hz, 1H), 4.53

(pseudo q, *J* = 7.2 Hz, 1H), 4.26-4.13 (m, 2H), 4.06 (q, *J* = 7.2 Hz, 2H), 3.87 (d, *J* = 8.4 Hz, 1H), 3.56 (d, *J* = 6.8 Hz, 2H), 1.24 (t, *J* = 7.0 Hz, 3H), 1.12 (t, *J* = 7.0 Hz, 3H).

Diethyl 2-(3-oxo-1-phenyl-3-(p-tolyl)propyl)malonate (5f):^{6e} TLC (PE/EtOAc = 20:1); yellow oil; 99% yield, 99% ee; HPLC: AD-H column, hexane/*i*-propanol (70/30), 1.0 mL/min, UV 254 nm, $t_{minor} = 13.010$ min, $t_{major} = 29.877$ min; $[\alpha]_D^{25} = +12.4^\circ$ (c =

1.320, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.78 (d, *J* = 8.0 Hz, 2H), 7.26-7.19 (m, 6H), 7.15 (t, *J* = 7.0 Hz, 1H), 4.22-4.14 (m, 3H), 3.93 (q, *J* = 7.2 Hz, 2H), 3.81 (d, *J* = 9.6 Hz, 1H), 3.50 (ABX, *J*_{AB} = 16.6 Hz, *J*_{BX} = 4.6 Hz, 1H), 3.41 (ABX, *J*_{AB} = 16.4 Hz, *J*_{AX} = 9.2 Hz, 1H), 2.37 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.99 (t, *J* = 7.2 Hz, 3H).

Diethyl 2-(3-(4-chlorophenyl)-3-oxo-1-phenylpropyl)malonate (5g):^{6e} TLC (PE/EtOAc = 15:1); yellow oil; 99% yield, >99% ee; HPLC: AD-H column, hexane/*i*-propanol (70/30), 1.0 mL/min, UV 254 nm, $t_{minor} = 13.233$ min, $t_{major} = 30.840$ min; $[\alpha]_D^{25} =$

+23.5° (c = 0.310, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.83$ (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.24-7.23 (m, 4H), 7.19-7.16 (m, 1H), 4.24-4.11 (m, 3H), 3.95 (q, J = 7.2 Hz, 2H), 3.80 (d, J = 10.0 Hz, 1H), 3.52 (ABX, $J_{AB} = 16.4$ Hz, $J_{BX} = 4.4$ Hz, 1H), 3.40 (ABX, $J_{AB} = 16.6$ Hz, $J_{AX} = 9.4$ Hz, 1H), 1.24 (t, J = 6.8 Hz, 3H), 1.00 (t, J = 7.0 Hz, 3H).

Diethyl 2-(3-oxo-1-phenyl-3-(thiophen-2-yl)propyl)malonate (5h):^{5a} TLC (PE/EtOAc = 20:1); yellow oil; 65% yield, 96% ee; HPLC: AD-H column, hexane/*i*-propanol (70/30), 1.0 mL/min, UV 254 nm, $t_{minor} =$ 10.290 min, $t_{major} = 15.050$ min; $[\alpha]_D^{25} = +25.8^\circ$ (c = 0.240, CHCl₃); ¹H

NMR (400 MHz, CDCl₃) δ = 7.71 (dd, *J* = 3.8, 1.0 Hz, 1H), 7.56 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.26-7.20 (m, 4H), 7.17-7.13 (m, 1H), 7.06 (dd, *J* = 5.0, 3.8 Hz, 1H), 4.22-4.12 (m, 3H), 3.93 (q, *J* = 7.2 Hz, 2H), 3.82 (d, *J* = 10.0 Hz, 1H), 3.45 (ABX, *J*_{AB} = 16.0 Hz, *J*_{BX} = 4.8 Hz, 1H), 3.35 (ABX, *J*_{AB} = 16.0 Hz, *J*_{AX} = 9.2 Hz, 1H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.99 (t, *J* = 7.2 Hz, 3H).

Diethyl 2-(1,3-bis(4-chlorophenyl)-3-oxopropyl)malonate (5i):²³ TLC (PE/EtOAc = 20:1); yellow oil; 99% yield, 93% ee; HPLC: AD-H column, hexane/*i*-propanol (70/30), 1.0 mL/min, UV 254 nm, $t_{minor} = 13.753$ min, $t_{major} = 34.360$ min;

 $[\alpha]_D^{25} = +3.8^{\circ}$ (*c* = 0.496, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 9.2 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 4.24-4.16 (m, 2H), 4.12 (dt, *J* = 9.8, 4.4 Hz, 1H), 3.97 (q, *J* = 7.2 Hz, 2H), 3.76 (d, *J* = 9.6 Hz, 1H), 3.51 (ABX, *J*_{AB} = 16.8 Hz, *J*_{BX} = 4.4 Hz, 1H), 3.37 (ABX, *J*_{AB} = 16.8 Hz, *J*_{AX} = 9.6 Hz, 1H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.04 (t, *J* = 7.0 Hz, 3H).

6. General procedure for synthesis of racemic adducts 6a-6f

Cinnamones 1 (0.2 mmol), racemic DPEN (8. 5 mg, 0.04 mmol) and TFA (5.0 μ L, 0.06 mmol) were dissolved in chloroform (1mL). Ethyl benzoylacetate **2f** (69.3 μ L, 0.4 mmol) was added, and reaction stirred at room temperature until completion (monitored by TLC). The mixture was directly purified by flash chromatography (eluents from PE/ethyl ether) to give racemic products.

7. General procedure for the synthesis of cyclohexenone 6a-6f

DPEN (8.5 mg, 0.04 mmol), cinnamones **1** (0.2 mmol), ethyl benzoylacetate **2f** (69.3 μ L, 0.4 mmol), and TFA (5.0 μ L, 0.06 mmol) were dissolved in chloroform (1mL). After stirred at rt for 120 h, the reaction mixture was purified by flash chromatography on silica gel (PE/EtOAc).

 $t_{major} = 12.720 \text{ min}, t_{minor} = 14.903 \text{ min}; [\alpha]_D^{25} = +86.2^{\circ} (c = 0.384, CHCl_3); {}^{1}\text{H NMR} (CDCl_3, 400 \text{ MHz}) \delta = 7.44-7.24 (m, 10H; both diastereomers), 6.65 (s, 1H; minor), 6.44 (d,$ *J*= 1.6 Hz, 1H; major), 4.19 (dd,*J*= 7.6, 1.2 Hz, 1H; major), 4.15 (d,*J*= 4.8 Hz, 1H; minor), 3.88 (q,*J*= 7.2 Hz, 2H; both diastereomers), 3.89-3.78 (m, 1H; both diastereomers), 2.88 (ABX,*J* $_{AB} = 16.8 Hz,$ *J* $_{BX} = 5.6 Hz, 1H; both diastereomers), 2.83 (ABX,$ *J* $_{AB} = 16.8 Hz, 1H; both diastereomers), 0.89 (t,$ *J*= 7.2 Hz, 3H; major), 0.87 (t,*J*= 7.2 Hz, 3H; minor).

Ethyl 6-(4-chlorophenyl)-4-oxo-2-phenylcyclohex-2-enecarboxylate (6b):^{19b} TLC (PE/EtOAc

= 2:1); colorless oil; 97% yield, dr: *trans/cis* 79:21; 87% ee/87% ee; HPLC: OD-H column, hexane/*i*-propanol (80/20), 0.6 mL/min, UV 254 nm, *trans* diastereomer: t_{major} = 29.077 min, t_{minor} = 36.350 min; *cis* diastereomer: t_{minor} = 22.537 min, t_{major} = 43.003 min; $[\alpha]_D^{25}$ =

+82.4° (c = 0.376, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) $\delta = 7.44$ -7.34 (m, 5H; both diastereomers), 7.30 (d, J = 8.0 Hz, 2H; both diastereomers), 7.20 (d, J = 8.0 Hz, 2H; both diastereomers), 6.64 (s, 1H; minor), 6.43 (s, 1H; major), 4.15-4.09 (m, 1H; both diastereomers), 3.88 (q, J = 7.2 Hz, 2H; both diastereomers), 3.82-3.75 (m, 1H; both diastereomers), 2.85 (ABX, $J_{AB} = 17.0$ Hz, $J_{BX} = 5.4$ Hz, 1H; both diastereomers), 2.78 (ABX, $J_{AB} = 16.8$ Hz, $J_{AX} = 9.6$ Hz, 1H; both diastereomers), 0.90 (t, J = 7.0 Hz, 3H; both diastereomers).

Ethyl 6-(4-bromophenyl)-4-oxo-2-phenylcyclohex-2-enecarboxylate (6c): ^{19b} TLC (PE/EtOAc

= 2:1); colorless oil; 92% yield, dr: *trans/cis* 80:20; 95% ee/97% ee; HPLC: IC-H column, hexane/*i*-propanol (95/5), 1 mL/min, UV 254 nm, *trans* diastereomer: t_{minor} = 18.520 min, t_{major} = 23.927 min; *cis* diastereomer: t_{major} = 21.097 min, t_{minor} = 26.050 min; $[\alpha]_D^{25}$ = +24.1°

 $(c = 0.646, \text{ CHCl}_3)$; ¹H NMR (CDCl₃, 400 MHz) $\delta \Box = 7.45$ (d, J = 8.0 Hz, 2H; both diastereomers), 7.40-7.36 (m, 5H; both diastereomers), 7.15 (d, J = 8.0 Hz, 2H; both diastereomers), 6.64 (s, 1H; minor), 6.43 (s, 1H; major), 4.14 (d, J = 7.6 Hz, 1H; major), 4.11 (d, J = 5.2 Hz, 1H; minor), 3.89 (q, J = 7.6 Hz, 2H; both diastereomers), 3.81-3.73 (m, 1H; both diastereomers), 2.86 (ABX, $J_{AB} = 17.0$ Hz, $J_{BX} = 5.0$ Hz, 1H; both diastereomers), 2.78 (ABX, $J_{AB} = 16.8$ Hz, $J_{AX} = 9.2$ Hz, 1H; both diastereomers), 0.90 (t, J = 7.2 Hz, 3H; both diastereomers).

Ethyl 6-(4-methoxyphenyl)-4-oxo-2-phenylcyclohex-2-enecarboxylate (6d):^{19b} TLC

(PE/EtOAc = 2:1); colorless oil; 99% yield, dr: *trans/cis* 66:34; 92% ee/90% ee; HPLC: OD-H column, hexane/*i*-propanol (90/10), 0.6 mL/min, UV 254 nm, *trans* diastereomer: $t_{minor} = 29.683$ min, $t_{major} = 41.330$ min; *cis* diastereomer: $t_{major} = 26.967$ min, $t_{minor} = 35.343$ min;

 $[\alpha]_D^{25} = +75.3^\circ$ (*c* = 0.492, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ = 7.60-7.58 (m, 1H; both diastereomers), 7.43-7.40 (m, 2H; both diastereomers), 7.37-7.35 (m, 2H; both diastereomers),

7.19 (d, J = 8.4 Hz, 2H; minor), 7.18 (d, J = 8.4 Hz, 2H; major), 6.90 (d, J = 8.8 Hz, 2H; minor), 6.85 (d, J = 8.4 Hz, 2H; major), 6.64 (s, 1H; minor), 6.43 (d, J = 1.6 Hz, 1H; major), 4.14 (dd, J =7.6, 1.6 Hz, 1H; major), 4.11 (d, J = 5.2 Hz, 1H; minor), 3.92-3.84 (m, 2H; both diastereomers), 3.81 (s, 3H; minor), 3.78 (s, 3H; major), 3.79-3.71 (m, 1H; both diastereomers), 2.85 (ABX, $J_{AB} =$ 17.0 Hz, $J_{BX} = 5.4$ Hz, 1H; major), 2.79 (ABX, $J_{AB} = 16.8$ Hz, $J_{AX} = 9.2$ Hz, 1H; major), 2.66 (d, J = 4.4 Hz, 1H; minor), 2.61 (d, J = 4.0 Hz, 1H; minor), 0.91 (t, J = 7.0 Hz, 1H; minor), 0.89 (t, J =7.2 Hz, 1H; major).

Ethyl 6-(naphthalen-2-yl)-4-oxo-2-phenylcyclohex-2-enecarboxylate (6e):^{19b} TLC (PE/EtOAc

= 2:1); colorless oil; 99% yield, dr: *trans/cis* 53:47; 89% ee/87% ee; HPLC: OD-H column, hexane/*i*-propanol (80/20), 0.75 mL/min, UV 254 nm, *trans* diastereomer: $t_{major} = 21.860$ min, $t_{minor} = 27.543$ min; *cis* diastereomer: $t_{minor} = 17.337$ min, $t_{major} = 32.870$ min; $[\alpha]_D^{25} =$

+30.8° (c = 0.552, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ= 7.88-7.78 (m, 3H; both diastereomers), 7.69 (s, 1H; minor), 7.67 (s, 1H; major), 7.62 (dd, J = 6.8, 2.8 Hz, 1H; both diastereomers), 7.51-7.42 (m, 6H; both diastereomers), 7.38-7.36 (m, 1H; both diastereomers), 6.70 (s, 1H; minor), 6.48 (s, 1H; major), 4.33 (d, J = 7.6 Hz, 1H; major), 4.26 (d, J = 4.8 Hz, 1H; minor), 4.03-3.69 (m, 3H; both diastereomers), 2.97-2.75 (m, 2H; both diastereomers), 0.85 (t, J = 7.0 Hz, 3H; major), 0.69 (t, J = 7.2 Hz, 3H; minor).

Ethyl 6-(thiophen -2-yl)-4-oxo-2-phenylcyclohex-2-enecarboxylate (6f): TLC (PE/EtOAc = 1:1); yellow oil; 94% yield, dr: *trans/cis* 60:40; 92% ee/90% ee; HPLC: OD-H column, hexane/*i*-propanol (80/20), 0.75 mL/min, UV 254 nm, *trans* diastereomer: $t_{maior} = 15.183 \text{ min}, t_{minor} = 20.427 \text{ min};$ *cis*

diastereomer: $t_{minor} = 13.797 \text{ min}$, $t_{major} = 17.387 \text{ min}$; $[\alpha]_D^{25} = +27.4^\circ$ (c = 0.518, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.61$ -7.59 (m, 1H; both diastereomers), 7.46-7.39 (m, 3H; both diastereomers), 7.38-7.36 (m, 1H; both diastereomers), 7.26-7.15 (m, 1H; both diastereomers), 7.00-6.88 (m, 2H; both diastereomers), 6.62 (s, 1H; minor), 6.44 (s, 1H; major), 4.22-4.21 (m, 1H; both diastereomers), 4.06-3.89 (m, 3H; both diastereomers), 3.02 (ABX, $J_{AB} = 17.0 \text{ Hz}$, $J_{BX} = 4.6 \text{ Hz}$, 1H; major), 2.87-2.77 (m, 1H; both diastereomers), 1.02 (t, J = 7.2 Hz, 3H; major), 0.96 (t, J = 7.2 Hz, 3H; minor); ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.0$, 196.5, 170.5, 169.3, 154.7, 154.2,

144.7, 143.3, 138.0, 136.6, 130.4, 129.9, 128.9, 128.7, 127.8, 126.8, 126.7, 126.6, 126.5, 126.4, 124.9, 124.5, 124.3, 124.2, 61.4, 61.3, 52.3, 51.3, 41.9, 39.3, 38.7, 38.4, 13.73, 13.70; ESI-HRMS: *m*/*z* [M+H]⁺ calcd for C₁₉H₁₉O₃S⁺ 327.1049; found 327.1051.

8. Synthetic transformation of adduct 5a

Diethyl 2-hydroxy-2-(3-oxo-1,3-diphenylpropyl)malonate (7):²¹ A mixture of **5a** (73.6 mg, 0.2 mmol), I₂ (50.4 mg, 0.2 mmol), and NaOAc (16.4 mg, 0.2 mmol) were stirred in 2mL of THF. Upon exposure to air at 35 °C for 48 h, most of the solvent was removed *in vacuo*, and 10 mL of water was added. To the mixture was added saturated Na₂S₂O₃ until the disappearance of umber, and then the mixture was extracted with dichloromethane (3×10 mL). The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (PE/EtOAc = 6:1) to provide the corresponding α -hydroxylmalonates 7 (72.0 mg, 96% yield, 94% ee) as yellow oil.

$$\begin{array}{l} \text{HPLC: AD-H column, hexane/i-propanol (90/10), 1.0 mL/min, UV 254 nm,} \\ \text{HPLC: AD-H column, hexane/i-propanol (90/10), 1.0 mL/min, UV 254 nm,} \\ \text{t}_{\text{minor}} = 20.550 \text{ min, } t_{\text{major}} = 23.740 \text{ min; } [\alpha]_{D}^{25} = +43.1^{\circ} (c = 0.320, \text{CHCl}_{3}); \\ \text{H}_{\text{minor}} = 20.550 \text{ min, } t_{\text{major}} = 23.740 \text{ min; } [\alpha]_{D}^{25} = +43.1^{\circ} (c = 0.320, \text{CHCl}_{3}); \\ \text{H}_{\text{minor}} = 10.23, \text{H}_{\text{minor}} = 20.550 \text{ min, } t_{\text{major}} = 23.740 \text{ min; } [\alpha]_{D}^{25} = +43.1^{\circ} (c = 0.320, \text{CHCl}_{3}); \\ \text{H}_{\text{minor}} = 10.23, \text{H}_{\text{minor}} = 20.550 \text{ min, } t_{\text{major}} = 23.740 \text{ min; } [\alpha]_{D}^{25} = +43.1^{\circ} (c = 0.320, \text{CHCl}_{3}); \\ \text{H}_{\text{minor}} = 10.23, \text{H}_{\text{min$$

Hz, 1H), 3.37 (dd, *J*_{AB} = 17.6 Hz, *J*_{AX} = 2.8 Hz, 1H), 1.29 (t, *J* = 7.0 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 3H).

1,1-diethyl 3-phenyl 2-phenylpropane-1,1,3-tricarboxylate (8): 5a (73.6 mg, 0.2 mmol) was dissolved in dry 1,2-dichloroethane (2 mL). Subsequently, *m*-CPBA (313.0 mg, 2.0 mmol) was added, followed by warm up to 60°C. The reaction mixture was stirred for 72 h, then quenched with a saturated solution of NaHSO₃, and stirred for 1 h. The organic phases were separated and washed with saturated aqueous NaHCO₃ solution (3 x 50 mL), then dried over anhydrous Na₂SO₄, to provide **8** (PE/EtOAc = 10:1) (69.7 mg, 91% yield, 95% ee) as colorless oil.

7.4 Hz, 1H), 6.75 (d, J = 7.6 Hz, 2H), 4.24 (q, J = 7.2 Hz, 2H), 4.04 (dt, J = 6.8, 4.8 Hz, 1H), 3.95 (q, J = 7.2 Hz, 2H), 3.80 (d, J = 10.4 Hz, 1H), 3.14 (ABX, $J_{AB} = 15.4$ Hz, $J_{BX} = 4.6$ Hz, 1H), 2.97 (ABX, $J_{AB} = 15.6$ Hz, $J_{AX} = 10.4$ Hz, 1H), 1.28 (t, J = 7.2 Hz, 3H), 1.00 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.7$, 167.9, 167.4, 150.4, 139.4, 129.2, 128.5, 128.3, 127.5, 125.7, 121.3, 61.8, 61.4, 57.3, 41.6, 38.8, 14.0, 13.7; ESI-HRMS: m/z [M+H]⁺ calcd for C₂₂H₂₅O₆⁺ 385.1646; found 385.1647.

1,1-diethyl 3-methyl 2-phenylpropane-1,1,3-tricarboxylate (9): 8 (76.8 mg, 0.2 mmol) was dissolved in dry MeOH (1 mL), and NaBH₄ (15.1 mg, 0.4 mmol) was added at 0°C. After stirring for 5 h at rt, the mixture was diluted with diethyl ether and quenched with brine, then the organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by flash silica gel (PE/DCM = 50:1) to provide the corresponding **9** (55.4 mg, 86% yield, 89% ee) as colorless oil.

EtO₂C CO₂Et HPLC: AD-H column, hexane/*i*-propanol (90/10), 1.0 mL/min, UV 210 nm, $t_{minor} = 9.787$ min, $t_{major} = 12.010$ min; $[\alpha]_D^{25} = +12.8^{\circ}$ (*c* = 0.601, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.32-7.19$ (m, 5H), 4.21 (q, *J* = 7.2 Hz, 2H), 3.95-3.89 (m, 3H), 3.74 (d, *J* = 10.4 Hz, 1H), 3.53 (s, 3H), 2.86 (ABX, *J*_{AB} = 15.6 Hz, *J*_{BX} = 4.8 Hz, 1H), 2.74 (ABX, *J*_{AB} = 15.8 Hz, *J*_{AX} = 9.8 Hz, 1H), 1.26 (t, *J* = 7.2 Hz, 3H), 0.98 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.6$, 168.0, 167.5, 139.7, 128.3, 128.0, 127.3, 61.7, 61.3, 57.2, 51.5, 41.4, 38.5, 13.9, 13.6; ESI-HRMS: *m/z* [M+H]⁺ calcd for C₁₇H₂₃O₆⁺ 323.1489; found 323.1490.

9. General procedure for decarboxylation of 6a

To a reaction tube was added **6a** (64.0 mg, 0.2 mmol) and NaOH (28.0 mg, 0.7 mmol). After the mixture was dissolved in ethanol (0.5 mL), then 1.5 mL of water was added. The resulting

solution was refluxed with vigorous stirring until TLC indicated complete disappearance of the starting material (2 h). Once cooling a period of time, the solution was rinsed with saturated aqueous NaHCO₃ solution to neutral, subsequently dried over anhydrous Na₂SO₄. The crude product was purified by flash column chromatography to yield 3,5-diphenylcyclohexenone **10** as a white solid (46.0 mg, 93% yield, 87% ee).

HPLC: AD-H column, hexane/*i*-propanol (80/20), 0.75 mL/min, UV 254 nm, $t_{major} = 11.747$ min, $t_{minor} = 12.743$ min; $[\alpha]_D^{23} = -26.6^\circ$ (c = 0.124, CH₂Cl₂) (lit,²⁴ *S*-configuration, $[\alpha]_D^{23} = +36.9^\circ$ (c = 2, CH₂Cl₂)); ¹H NMR (CDCl₃, 400 MHz) $\delta = 7.58-7.55$ (m, 2H), 7.43-7.41 (m, 3H), 7.38 (d, J = 7.2 Hz, 2H), 7.33-7.28 (m, 3H), 6.53 (d, J = 2.4 Hz, 1H), 3.51-3.43 (m, 1H), 3.07 (ABX, $J_{AB} = 17.6$ Hz, $J_{AX} = 4.0$ Hz, 1H), 2.98-2.90 (m, 1H), 2.79 (ABX, $J_{AB} = 16.8$ Hz, $J_{AX} = 5.6$ Hz, 1H), 2.73 (ABX, $J_{AB} = 16.4$ Hz, $J_{BX} = 12.8$ Hz, 1H).

10. Reference

- 2b. V. Wascholowski, K. R. Knudsen, C. E. T. Mitchell and S. V. Ley, Chem. Eur. J., 2008, 14, 6155.
- 5a. T. Ooi, D. Ohara, K. Fukumoto and K. Maruoka, Org. Lett., 2005, 7, 3195.
- 6b. P. Li, S. Wen, F. Yu, Q. Liu, W. Li, Y. Wang, X. Liang and J. Ye, Org. Lett., 2009, 11, 753.
- 6d. J. Wang, H. Li, L. Zu, W. Jiang, H. Xie, W. Duan and W. Wang, J. Am. Chem. Soc., 2006, 128, 12652.
- 6e. Y. Liu, X. Wang, X. Wang and W. He, Org. Biomol. Chem., 2014, 12, 3163.
- 8a. Y. Q. Yang and G. Zhao, Chem. Eur. J., 2008, 14, 10888.
- 19b. Y.-Q. Yang, Z. Chai, H.-F. Wang, X.-K. Chen, H.-F. Cui, C.-W. Zheng, H. Xiao, P. Li and G. Zhao, *Chem. Eur. J.*, 2009, **15**, 13295.
- 21. C.-B. Miao, M. Zhang, Z.-Y. Tian, H.-T. Xi, X.-Q. Sun and H.-T. Yang, *J. Org. Chem.*, 2011, **76**, 9809.
- J. M. Betancort, K. Sakthivel, R. Thayumanavan, F. Tanaka and C. F. Barbas Iii, *Synthesis*, 2004, 2004, 1509.
- 23. G. Singh, P. Goswami and R. Vijaya Anand, Org. Biomol. Chem., 2018, 16, 384.
- 24. F.-Y. Zhang and E. J. Corey, Org. Lett., 2000, 2, 1097.

11. NMR spectra and HPLC chromatograms

1875.780

Total:

2737.788

100.00

100.00

Integration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		10.397	541.840	1574.273	49.94	53.78	n.a.	
2		13.877	543.059	1352.975	50.06	46.22	n.a.	
Total:			1084.898	2927.248	100.00	100.00		

Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount		
	220103.0000.0000	min	mAU*min	mAU	%	%	n.a.		
1		9.967	5.363	14.065	3.05	3.81	n.a.		
2		12.463	170.573	354.688	96.95	96.19	n.a.		
Total:			175.936	368.753	100.00	100.00			

78.262

155.040

208.495

470.868

50.48

100.00

44.28

100.00

n.a.

11.277

Total:

Integration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		9.697	616.864	1632.770	49.15	55.34	n.a.	
2		14.717	638.092	1317.559	50.85	44.66	n.a.	
Total:			1254.956	2950.329	100.00	100.00		

Integration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		9.710	43.615	119.421	2.84	4.81	n.a.	
2		14.570	1494.336	2365.025	97.16	95.19	n.a.	
Total:			1537.951	2484.446	100.00	100.00	29111-14-	

860.148

1376.224

100.00

Total:

n.a.

100.00

Integr	ntegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		7.893	1657.413	2759.267	48.45	50.95	n.a.				
2		9.657	1763.415	2656.510	51.55	49.05	n.a.				
Total:			3420.828	5415.777	100.00	100.00					

Integr	tegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		7.893	516.201	1175.119	96.54	96.37	n.a.				
2		9.663	18.477	44.254	3.46	3.63	n.a.				
Total:			534.678	1219.374	100.00	100.00					

Integr	ntegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		25.450	2634.109	1760.901	87.17	87.52	n.a.				
2		33.790	387.604	251.008	12.83	12.48	n.a.				
Total:			3021.712	2011.910	100.00	100.00					

INO.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		9.660	8.291	32.371	0.93	2.28	n.a.
2		16.310	882.435	1385.347	99.07	97.72	n.a.
Total:			890.726	1417.717	100.00	100.00	

744.198

1456.228

1035.799

2872.683

51.10

100.00

36.06

100.00

n.a.

20.787

Total:

Integ	tegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		12.440	11.215	34.340	3.13	6.12	n.a.				
2		20.463	346.846	527.161	96.87	93.88	n.a.				
Total:			358.060	561.501	100.00	100.00					

No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		8.797	1294.325	3181.227	48.46	55.54	n.a.
2		12.190	1376.496	2547.071	51.54	44.46	n.a.
Total:			2670.820	5728.298	100.00	100.00	14.1

nicegi	ation Results	and the second			and the second		
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		10.290	10.418	36.735	2.20	3.49	n.a.
2		15.050	463.574	1015.478	97.80	96.51	n.a.
Total:		2.42.4757.542	473.991	1052.213	100.00	100.00	

Integr	ation Results						
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		11.693	336.407	840.030	29.05	31.36	n.a.
2		13.303	231.382	552.044	19.98	20.61	n.a.
3		14.860	370.280	817.914	31.97	30.53	n.a.
4		15.730	220.037	469.027	19.00	17.51	n.a.
Total:	2		1158.105	2679.016	100.00	100.00	

Integ	tegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		11.297	13.987	40.542	1.16	1.47	n.a.				
2		12.720	438.597	1042.741	36.38	37.84	n.a.				
3		14.230	745.444	1644.948	61.83	59.70	n.a.				
4		14.903	7.690	27.121	0.64	0.98	n.a.				
Total:			1205.717	2755.352	100.00	100.00					

1 18.520 66.965 110.023 1.69 2.20 2 21.097 1391.412 1939.403 35.05 38.73 3 23.927 2488.991 2918.848 62.69 58.29 4 26.050 22.724 38.813 0.57 0.78 Total:							
2 21.097 1391.412 1939.403 35.05 38.73 3 23.927 2488.991 2918.848 62.69 58.29 4 26.050 22.724 38.813 0.57 0.78 Total: 3970.092 5007.087 100.00 100.00		18.520	66.965	110.023	1.69	2.20	n.a.
3 23.927 2488.991 2918.848 62.69 58.29 4 26.050 22.724 38.813 0.57 0.78 Total: 3970.092 5007.087 100.00 100.00		21.097	1391.412	1939.403	35.05	38.73	n.a.
4 26.050 22.724 38.813 0.57 0.78 Total: 3970.092 5007.087 100.00 100.00		23.927	2488.991	2918.848	62.69	58.29	n.a.
Total: 3970.092 5007.087 100.00 100.00		26.050	22.724	38.813	0.57	0.78	n.a.
	74 7		3970.092	5007.087	100.00	100.00	

NO.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		26.637	393.221	536.128	18.33	22.75	n.a.
2		29.690	679.929	816.595	31.69	34.65	n.a.
3		35.360	394.418	401.411	18.38	17.03	n.a.
4		40.677	678.110	602.561	31.60	25.57	n.a.
Total:			2145.678	2356.695	100.00	100.00	alasion (n

1651.553

4603.370

Total:

100.00

100.00

659.281

1895.562

100.00

n.a.

100.00

2

Total:

