Supplementary information for "Quantitative Structure-Property Relationship Study of Reorganization Energy for *p*-Type Organic Semiconductors"

Sule Atahan-Evrenk*

TOBB University of Economics and Technology, Faculty of Medicine 43 Sogutozu Cad. Sogutozu Ankara TURKEY

E-mail: satahanevrenk@etu.edu.tr

September 19, 2018

1 Molecular library

		Reorganization	Previous	ϵ_n^{homo}	ϵ_c^{homo}	IP_{adia}	IP_{vert}	Dí
	Compound	Energy (meV)	Work	(eV)	(eV)	(eV)	(eV)	References
1	$\left< \sum_{s} \right>$	403	408^{1}	-6.35	-5.98	8.51	8.71	
2		185	178^2 182^3	-5.80	-5.62	7.61	7.70	[6]
			186^{4}					
			189^{5}					
3	⟨s	409	410^{7}	-5.86	-5.47	7.66	7.87	[8]
4		358		-6.06	-5.71	7.61	7.80	
5	[s]→	420	365^{9}	-5.54	-5.13	7.12	7.35	[9]
	~ 5'		424^{1}					
6		218	212^{2}	-5.74	-5.53	7.32	7.43	[2]
7		138	134^{2}	-5.24	-5.10	6.82	6.89	[10]
	~ ~ ~		138^{4}					
			141^{5}					
8	s s	230		-5.78	-5.55	7.40	7.51	[11]
9	SS	288		-5.67	-5.39	7.27	7.41	[11]
10	S	108	106^{4}	-5.50	-5.39	7.15	7.20	[12]
11	S	165	166^{4}	-5.48	-5.31	7.11	7.19	[13]
				Continu	ied on the	next page		

Table 1: The compound set and electronic data.

	Come and	Reorganization	Previous	ϵ_n^{homo}	ϵ_c^{homo}	IP_{adia}	IP_{vert}	D - f			
	Compound	Energy (meV)	Work	(eV)	(eV)	(eV)	(eV)	References			
12	ss	193		-5.51	-5.32	7.17	7.26	[14]			
13	⟨_s ^s ⟩_s	352	350^{7} 350^{4}	-5.61	-5.27	7.20	7.38	[15]			
14	√s S	209	000	-5.53	-5.33	7.19	7.29	[16]			
15	s s	187		-5.66	-5.48	7.36	7.45	[14]			
16		279		-5.42	-5.14	6.87	7.01	[17]			
17		165	161^{2}	-5.53	-5.36	6.95	7.04	[18]			
18		111	109^{2}	-4.87	-4.76	6.28	6.34	[19]			
			114^{4}								
			115^{5}								
19	< COO	110		-4.99	-4.88	6.42	6.48	[20]			
20	s-C	243		-5.56	-5.32	6.99	7.11	[11]			
21	S S	238		-5.51	-5.28	6.96	7.08	[8]			
22	<pre>status</pre>	100	100^{4}	-5.10	-5.01	6.57	6.62	[11]			
23	S S S S S S S S S S S S S S S S S S S	105	106^{4}	-5.10	-5.00	6.56	6.61	[11]			
24	C S S S S S S S S S S S S S S S S S S S	280		-5.67	-5.41	7.10	7.24	[21]			
25		225		-5.59	-5.37	7.04	7.15	[22]			
				Continued on the next page							

	Q 1	Reorganization	Previous	ϵ_n^{homo}	ϵ_c^{homo}	IP_{adia}	IP_{vert}	Dí			
	Compound	Energy (meV)	Work	(eV)	(eV)	(eV)	(eV)	References			
26	s s s s	378		-5.02	-4.66	6.44	6.63	[8]			
27	(s s s s	373	321 ⁹ 373 ¹	-5.20	-4.84	6.50	6.70	[9]			
28		145	142^{2}	-4.96	-4.83	6.36	6.43	[23]			
29	s s s	301		-5.72	-5.42	7.19	7.34	[8]			
30		326	326^{4} 330^{7}	-5.43	-5.11	6.85	7.02	[15]			
31	C S S S S S S S S S S S S S S S S S S S	299		-5.49	-5.21	6.79	6.95	[8]			
32	s s s	302		-5.59	-5.27	6.92	7.08	[8]			
33	s s s s	183		-5.44	-5.25	6.89	6.98	[8]			
34		215		-5.37	-5.20	6.71	6.82	[8]			
35	0	185	180^2 180^{24} 182^{25}	-5.50	-5.32	6.81	6.90	[26]			
36		168	168^{25}	-5.39	-5.23	6.70	6.78	[25]			
37		178	178^{12} 177^{25}	-5.33	-5.16	6.61	6.70	[12]			
				Continued on the next page							

	0 1	Reorganization	Previous	ϵ_n^{homo}	ϵ_c^{homo}	IP_{adia}	IP_{vert}	Dſ		
	Compound	Energy (meV)	Work	(eV)	(eV)	(eV)	(eV)	References		
38		93	92^2 95^5	-4.61	-4.52	5.90	5.95	[28]		
			$98^4 \ 91^{24}$:						
			92^{25}							
			91^{27}							
39	$\left<\!$	365		-5.29	-4.94	6.56	6.76	[8]		
40	S S	256		-5.61	-5.36	7.02	7.14	[8]		
41		359		-5.27	-4.92	6.55	6.75	[8]		
42		96	92.9^{27}	-4.71	-4.61	6.01	6.06	[20]		
43		118	116^{25}	-5.42	-5.31	6.77	6.83	[12]		
			119^{12}							
			115^{27}							
44	s S S S S S S S S S S S S S S S S S S S	155		-5.23	-5.08	6.56	6.63	[11]		
45	s s	200	204^{12}	-5.35	-5.16	6.65	6.75	[12]		
46	<pre>stills</pre>	94	$94^4 \ 90^{27}$	-4.81	-4.72	6.13	6.18	[29]		
47	<pre>statistics</pre>	95	94^{25}	-4.81	-4.71	6.13	6.18	[30]		
			$96^4 \ 96^{22}$	1						
			91^{27}							
48		182	181^{12}	-5.43	-5.25	6.76	6.84	[12]		
49	C _s	134		-5.27	-5.14	6.62	6.68	[11]		
50		153	148^{27}	-5.32	-5.17	6.66	6.73	[31]		
51		117	114^{27}	-5.58	-5.46	6.97	7.02	[32]		
52		87	82.5^{27}	-5.63	-5.55	7.01	7.05	[27]		
				Continued on the next page						

	C 1	Reorganization	Previous	ϵ_n^{homo}	ϵ_c^{homo}	IP_{adia}	IP_{vert}	Dſ	
	Compound	Energy (meV)	Work	(eV)	(eV)	(eV)	(eV)	References	
53	S S S	266		-5.75	-5.52	7.12	7.26	[8]	
54	s-C-C-s	149	148^{4}	-5.46	-5.32	6.82	6.89	[33]	
			142^{27}						
55		118	118^{4}	-5.53	-5.41	6.92	6.98	[33]	
			119^{25}						
			112^{27}						
56		208		-4.99	-4.78	6.21	6.31	[17]	
57		115		-5.24	-5.13	6.46	6.52	[17]	
58	$\left< \mathbf{x}_{s}^{s} \right> = \left< \mathbf{x}_{s}^{s} \right>$	293		-5.24	-4.96	6.46	6.61	[8]	
59		231	231^{25}	-5.42	-5.19	6.75	6.86	[22]	
			221^{27}						
60	() () () () () () () () () () () () () (320		-5.52	-5.19	6.74	6.91	[8]	
61	S S S S	362		-5.15	-4.80	6.33	6.53	[8]	
62	0-0-0-0	309		-5.62	-5.32	6.74	6.90	[34]	
63		307	306^{22}	-5.30	-5.00	6.61	6.76	[15]	
			307^{25}						
			308^{4}						
			310^{7}						
			314^{5}						
			299^{27}						
64		318		-5.12	-4.83	6.28	6.45	[35]	
65		266		-5.39	-5.13	6.58	6.72	[8]	
66	s f s s to	339		-5.07	-4.75	6.21	6.39	[36]	
				Continued on the next page					

	0 1	Reorganization	Previous	ϵ_n^{homo}	ϵ_c^{homo}	IP_{adia}	IP_{vert}	Dí
	Compound	Energy (meV)	Work	(eV)	(eV)	(eV)	(eV)	References
67		193		-5.31	-5.12	6.54	6.63	[37]
68	0,000	148	144^{2}	-5.43	-5.28	6.64	6.72	[2]
69		79	79^{2}	-4.42	-4.34	5.61	5.65	[38]
70		255		-5.10	-4.88	6.37	6.51	[39]
71		348	293 ⁹	-5.02	-4.69	6.14	6.34	[1]
	~		345^{1}					
			379^{5}					
72		85		-4.50	-4.42	5.71	5.75	[40]
73		87		-4.59	-4.50	5.80	5.85	[22]
74		114		-5.02	-4.91	6.27	6.32	[31]
75		196		-5.33	-5.14	6.56	6.65	[41]
76		187		-5.34	-5.15	6.60	6.69	[8]
77		189		-5.47	-5.29	6.68	6.77	[41]
78		130	130^{22}	-5.19	-5.06	6.42	6.48	[42]
			134^{5}					
79		267		-5.27	-5.03	6.45	6.58	[43]
80		252		-4.97	-4.74	6.06	6.18	[8]
81		312		-5.19	-4.91	6.34	6.50	
82	C C	225		-5.55	-5.34	6.76	6.88	[44]
83	S S S S	212		-5.57	-5.36	6.85	6.96	[8]
				Continu				

	C 1	Reorganization	Previous	ϵ_n^{homo}	ϵ_c^{homo} IP _{adia}	IP_{vert}	Dí			
	Compound	Energy (meV)	Work	(eV)	(eV)	(eV)	(eV)	References		
84	S S S S	211		-5.39	-5.18	6.66	6.76	[8]		
85		320		-5.31	-5.00	6.52	6.67	[17]		
86		103		-5.11	-5.00	6.23	6.28	[45]		
87	S-Cs-Cs-Cs-Cs-Cs-Cs-Cs-Cs-Cs-Cs-Cs-Cs-Cs-	328		-5.07	-4.76	6.19	6.37	[46]		
88	S S S S S	291	290^{7}	-5.21	-4.93	6.42	6.56	[47]		
89		414		-4.76	-4.36	5.93	6.13	[48]		
90		160		-4.72	-4.58	5.92	6.00	[49]		
91		237	245^{5}	-5.19	-4.95	6.38	6.50	[50]		
92	(J+J+C)	262		-5.30	-5.05	6.42	6.55	[8]		
93		152	148^{2}	-5.41	-5.26	6.55	6.63	[2]		
94		281		-5.29	-5.01	6.39	6.55	[8]		
95		264		-5.30	-5.04	6.41	6.55	[51]		
96		230		-5.31	-5.08	6.42	6.53	[52]		
97	0-0-0-0-0	288		-5.54	-5.25	6.54	6.69	[34]		
98		79		-4.42	-4.34	5.55	5.59	[22]		
99		103		-4.98	-4.88	6.14	6.19	[31]		
100	s S S S S S S S S S S S S S S S S S S S	372		-5.39	-5.01	6.50	6.71	[53]		
101	S S S S S S S S S S S S S S S S S S S	337		-5.14	-4.81	6.22	6.41	[54]		
102	0-(1-1-1-0)	253		-5.32	-5.09	6.41	6.53	[55]		
103		155		-5.00	-4.87	6.18	6.25	[55]		
104		116		-5.02	-4.92	6.23	6.28	[55]		
				Continued on the next page						

	Common d	Reorganization	Previous	ϵ_n^{homo}	ϵ_c^{homo}	IP_{adia}	IP_{vert}	D - f
	Compound	Energy (meV)	Work	(eV)	(eV)	(eV)	(eV)	References
105	0400	232		-5.30	-5.09	6.42	6.53	[55]
106		106		-5.50	-5.39	6.71	6.76	[56]
107		110		-5.55	-5.43	6.75	6.81	[56]
108		292		-5.29	-5.02	6.37	6.52	[8]
109	s s	132		-5.21	-5.08	6.40	6.47	[39]
110		124		-5.30	-5.18	6.51	6.57	[32]
111		179		-5.34	-5.16	6.50	6.58	[57]
112		305		-5.26	-4.96	6.27	6.43	[58]
113		241		-5.31	-5.07	6.43	6.56	[59]
114		309	272^{9}	-4.90	-4.61	5.91	6.07	[60]
			314^{1}					
115		236		-5.26	-5.03	6.39	6.51	[57]
116		308		-5.14	-4.83	6.24	6.39	[53]
117		160		-5.58	-5.42	6.79	6.87	[8]
118	S S S S	207		-5.55	-5.35	6.77	6.87	[8]
119	s s s s s s s s s s s s s s s s s s s	210		-5.62	-5.42	6.86	6.98	[8]
120		280	280^{4}	-5.14	-4.87	6.27	6.41	[15]
121		134		-4.98	-4.86	6.05	6.12	[8]
122	Jes L	186		-5.32	-5.14	6.42	6.51	[61]
123	09:00	181		-5.33	-5.15	6.42	6.51	[61]
				Continu	ed on the n	ext page		

	C 1	Reorganization	Previous	ϵ_n^{homo}	ϵ_c^{homo}	IP_{adia}	IP_{vert}	Dí
	Compound	Energy (meV)	Work	(eV)	(eV)	(eV)	(eV)	References
124		181		-5.45	-5.27	6.53	6.62	[61]
125		85		-4.89	-4.81	5.96	6.00	[61]
126	0-0-00-00-0	311		-5.19	-4.90	6.18	6.34	[8]
127		290		-5.25	-4.97	6.32	6.47	[8]
128	6-49 ⁰⁰ 00	261		-5.11	-4.87	6.13	6.26	
129		124		-5.12	-5.00	6.24	6.30	[31]
130		242		-4.89	-4.66	5.97	6.09	[17]
131		141		-5.06	-4.93	6.13	6.20	[17]
132		240		-5.10	-4.87	6.09	6.22	[58]
133	0-14/10-0	232		-4.91	-4.70	5.89	6.00	[8]
134	00000	301		-4.95	-4.67	5.91	6.08	[8]
135	0-0-0-0-0-0	254		-5.49	-5.23	6.41	6.53	[34]
136	07-127-10	257		-5.15	-4.90	6.15	6.28	[8]
137		348		-4.71	-4.37	5.73	5.90	[48]
138	00-137-000	165		-4.70	-4.55	5.76	5.84	[49]
139	00-00-0 ⁰⁰	300		-5.05	-4.76	6.00	6.15	[8]
140		182		-4.51	-4.35	5.62	5.72	[8]
141		452		-5.22	-4.75	6.18	6.43	[8]
142	0-0-0-0-0-0	309		-5.06	-4.78	6.02	6.19	[62]
				Continu	ed on the r	lext page		

	Common d	Reorganization	Previous	ϵ_n^{homo}	ϵ_c^{homo}	IP_{adia}	IP_{vert}	Deferrer
	Compound	Energy (meV)	Work	(eV)	(eV)	(eV)	(eV)	References
143		268		-5.09	-4.83	6.15	6.28	[8]
144	0	232		-4.85	-4.64	5.78	5.89	[8]
145	0-0-0-0-0	323		-5.01	-4.71	5.92	6.09	[63]
146	Q \$-0-0-0-0	287		-5.12	-4.84	5.99	6.15	[64]
147		76		-5.21	-5.14	6.27	6.31	[61]
148	684469	140		-4.92	-4.79	5.95	6.02	[61]
149		123		-5.17	-5.05	6.24	6.30	[61]
150		270		-5.15	-4.89	6.14	6.28	[51]
151	0-000000-0	145		-5.14	-5.01	6.19	6.26	[65]
152	0-00-100-0	108		-5.19	-5.08	6.29	6.35	[65]
153	040400	258	253^{9}	-4.81	-4.56	5.74	5.87	[66]
			301^{1}					
154	000000	293		-5.11	-4.85	6.07	6.23	[46]
155		305		-5.12	-4.84	6.17	6.33	[8]
156		481		-5.11	-4.63	6.02	6.28	[8]
157		205		-5.29	-5.09	6.30	6.40	[8]
158	0-0-13-0-0	181		-4.69	-4.54	5.73	5.82	[49]
159	ATT-LO-LIC	257		-5.02	-4.76	5.96	6.08	[8]
160		199		-5.22	-5.02	6.27	6.37	[67]
161	20,000	275		-4.99	-4.73	5.92	6.06	[8]
162		290		-4.88	-4.61	5.77	5.94	[8]
163		83		-5.04	-4.95	5.95	5.99	[45]
				Continu	ed on the r	next page		

	Compound	Reorganization	Previous	ϵ_n^{homo}	ϵ_c^{homo}	IP_{adia}	IP_{vert}	Deferences
	Compound	Energy (meV)	Work	(eV)	(eV)	(eV)	(eV)	References
164		147	160^{5}	-4.69	-4.56	5.80	5.87	[68]
165		301		-4.94	-4.65	5.81	5.97	[8]
166		265	273^{1}	-4.78	-4.54	5.63	5.76	[15]
167		308		-4.72	-4.42	5.66	5.81	[48]
168	0.0100100	133		-5.11	-4.98	6.12	6.19	[8]
169		363		-5.13	-4.80	6.12	6.31	[8]
170		268	256^{1}	-4.77	-4.52	5.54	5.68	[9]
171		266		-4.67	-4.41	5.55	5.68	[48]

	λ	E_n	ϵ_n^{homo}	ϵ_c^{homo}	ϵ_n^{lumo}	ϵ_c^{lumo}	IP_{vert}	$\operatorname{QPol}_{ave}$	FsdRing	RotBond	Scount	vdWsa	Rcount
λ	1.00	-0.26	-0.20	0.08	0.16	0.05	0.19	-0.05	-0.46	0.44	0.34	-0.05	-0.22
E_n	-0.26	1.00	-0.32	-0.40	0.30	0.30	0.48	-0.64	-0.24	-0.43	-0.93	-0.48	-0.60
ϵ_n^{homo}	-0.20	-0.32	1.00	0.96	-0.87	-0.86	-0.94	0.64	0.20	0.35	0.13	0.55	0.52
ϵ_c^{homo}	0.08	-0.40	0.96	1.00	-0.84	-0.86	-0.90	0.64	0.08	0.47	0.23	0.54	0.47
$\epsilon_n^{\tilde{l}umo}$	0.16	0.30	-0.87	-0.84	1.00	0.99	0.85	-0.65	-0.31	-0.24	-0.10	-0.50	-0.57
ϵ_c^{lumo}	0.05	0.30	-0.86	-0.86	0.99	1.00	0.84	-0.66	-0.23	-0.32	-0.10	-0.52	-0.54
IP_{vert}	0.19	0.48	-0.94	-0.90	0.85	0.84	1.00	-0.82	-0.29	-0.46	-0.22	-0.75	-0.71
$QPol_{ave}$	-0.05	-0.64	0.64	0.64	-0.65	-0.66	-0.82	1.00	0.28	0.62	0.33	0.92	0.84
FsdRing	-0.46	-0.24	0.20	0.08	-0.31	-0.23	-0.29	0.28	1.00	-0.50	0.12	0.23	0.68
RotBond	0.44	-0.43	0.35	0.47	-0.24	-0.32	-0.46	0.62	-0.50	1.00	0.26	0.65	0.21
Scount	0.34	-0.93	0.13	0.23	-0.10	-0.10	-0.22	0.33	0.12	0.26	1.00	0.13	0.30
vdWsa	-0.05	-0.48	0.55	0.54	-0.50	-0.52	-0.75	0.92	0.23	0.65	0.13	1.00	0.83
Rcount	-0.22	-0.60	0.52	0.47	-0.57	-0.54	-0.71	0.84	0.68	0.21	0.30	0.83	1.00

Table 2: Pairwise correlation matrix with Pearson's correlation coefficient for the RE (λ) and electronic and structural descriptors.

 E_n : Total electronic energy, ϵ : Molecular orbital energy, IP_{vert}: Vertical Ionization Potential, QPol_{ave}: Average polarizability, FsdRing: Fused ring count, RotBond: Rotatable bond count, Scount: Sulfur atom count, vdWsa: van der Waals surface area, Rount: Ring count Electronic descriptors calculated at the B3LYP/6-31G(d,p) level of theory.

2 Molecular transform descriptors

Following Soltzberg and Wilkins, we limit s into the interval [1,31] divided into 100 equal pieces. However, instead of the binary representation they used in which the intervals with I(s) = 0 were coded as "1", and "0" otherwise, we retained the original I(s) values. Figure 1 plots the comparison of I(s) distributions for the pentacene with the DFT and molecular mechanics (MM) geometries.

Figure 1: 3D structural descriptor based on the molecular transforms for pentacene with the DFT and MM geometries.

3 Principle Components

Figure 2: Explained variance ratio by the principle components in the signature (left) descriptor spaces

References

- (1) da Silva Filho, D. A.; Coropceanu, V.; Fichou, D.; Gruhn, N. E.; Bill, T. G.; Gierschner, J.; Cornil, J.; Brédas, J.-L. Hole-vibronic coupling in oligothiophenes: impact of backbone torsional flexibility on relaxation energies. *Philos. Trans. R. Soc.*, A 2007, 365, 1435–1452.
- (2) Malloci, G.; Cappellini, G.; Mulas, G.; Mattoni, A. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: A systematic (time-dependent) density functional theory study. *Chem. Phys.* **2011**, *384*, 19 – 27.
- (3) Malloci, G.; Mulas, G.; Cappellini, G.; Joblin, C. Time-dependent density functional study of the electronic spectra of oligoacenes in the charge states 1, 0, +1, and +2. *Chem. Phys.* 2007, 340, 43 – 58.
- (4) Coropceanu, V.; Cornil, J.; Filho, D. S.; A, D.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Charge transport in organic semiconductors. *Chem. Rev* 2007, 107, 926–952.
- (5) Yavuz, I.; Martin, B. N.; Park, J.; Houk, K. N. Theoretical Study of the Molecular Ordering, Paracrystallinity, And Charge Mobilities of Oligomers in Different Crystalline Phases. J. Am. Chem. Soc. 2015, 137, 2856–2866.
- (6) Karl, N. Charge carrier transport in organic semiconductors. Synthetic Metals 2003, 133, 649
 657, Proceedings of the Yamada Conference LVI. The Fourth International Symposium on Crystalline Organic Metals, Superconductors and Ferromagnets (ISCOM 2001).
- (7) Zhang, Y.; Cai, X.; Bian, Y.; Li, X.; Jiang, J. Heteroatom Substitution of Oligothienoacenes: From Good p-Type Semiconductors to Good Ambipolar Semiconductors for Organic Field-Effect Transistors. J. Phys. Chem. C 2008, 112, 5148–5159.
- (8) Cinar, M. E.; Ozturk, T. Thienothiophenes, Dithienothiophenes, and Thienoacenes: Syntheses, Oligomers, Polymers, and Properties. *Chem. Rev.* 2015, 115, 3036–3140.
- (9) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. Hopping Transport in Conductive Heterocyclic Oligomers: Reorganization Energies and Substituent Effects. J. Am. Chem. Soc. 2005, 127, 2339–2350.

- (10) Aleshin, A. N.; Lee, J. Y.; Chu, S. W.; Kim, J. S.; Park, Y. W. Mobility studies of fieldeffect transistor structures basedon anthracene single crystals. *Appl. Phys. Lett.* 2004, 84, 5383–5385.
- (11) Osaka, I.; Shinamura, S.; Abe, T.; Takimiya, K. Naphthodithiophenes as building units for small molecules to polymers; a case study for in-depth understanding of structure-property relationships in organic semiconductors. J. Mater. Chem. C 2013, 1, 1297–1304.
- (12) Coropceanu, V.; Kwon, O.; Wex, B.; Kaafarani, B. R.; Gruhn, N. E.; Durivage, J. C.; Neckers, D. C.; Brédas, J.-L. Vibronic Coupling in Organic Semiconductors: The Case of Fused Polycyclic Benzene-Thiophene Structures. *Chem. Eur. J.* **2006**, *12*, 2073–2080.
- (13) Tomoya, K.; Eigo, M.; Kazuo, T. 2,6-Dialkylbenzo[1,2-b:4,5-b']dithiophenes (Cn-BDTs) as Soluble Organic Semiconductors for Solution-processed Organic Field-effect Transistors. *Chem. Lett.* 2008, *37*, 284–285.
- (14) Janssen, M. J.; De Jong, F. Synthesis, oxidation, and electronic spectra of four dithienothiophenes. J. Org. Chem. 1971, 36, 1645–1648.
- (15) Zhang, X.; Cote, A. P.; Matzger, A. J. Synthesis and Structure of Fused alpha-Oligothiophenes with up to Seven Rings. J. Am. Chem. Soc. 2005, 127, 10502–10503.
- (16) De Jong, F.; Janssen, M. J. Synthesis of dithienothiophenes. J. Org. Chem. 1971, 36, 1998–2000.
- (17) Kawase, T.; Fujiwara, T.; Kitamura, C.; Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kubo, T.; Shinamura, S.; Mori, H.; Miyazaki, E.; Takimiya, K. Dinaphthopentalenes: Pentalene Derivatives for Organic Thin-Film Transistors. *Angew. Chem. Int. Ed.* **2010**, *49*, 7728– 7732.
- (18) Kunugi, Y.; Ikari, M.; Okamoto, K. Chrysene Derivatives as New Organic Semiconductors for Organic Field-effect Transistors. ECS Trans. 2010, 25, 11–17.
- (19) Goldmann, C.; Haas, S.; Krellner, C.; Pernstich, K. P.; Gundlach, D. J.; Batlogg, B. Hole

mobility in organic single crystals measured by a flip-crystal field-effect technique. J. Appl. Phys. 2004, 96, 2080–2086.

- (20) Tang, M. L.; Okamoto, T.; Bao, Z. High-Performance Organic Semiconductors:âÅL' Asymmetric Linear Acenes Containing Sulphur. J. Am. Chem. Soc. 2006, 128, 16002–16003.
- (21) Shinamura, S.; Miyazaki, E.; Takimiya, K. Synthesis, Properties, Crystal Structures, and Semiconductor Characteristics of Naphtho[1,2-b:5,6-b']dithiophene and -diselenophene Derivatives. J. Org. Chem. 2010, 75, 1228–1234.
- (22) Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E. Thienoacene-Based Organic Semiconductors. Adv. Mater. 2011, 23, 4347–4370.
- (23) Kim, S. H.; Yang, Y. S.; Lee, J. H.; Lee, J.-I.; Chu, H. Y.; Lee, H.; Oh, J.; Do, L.-M.; Zyung, T. Organic field-effect transistors using perylene. *Opt. Mater.* 2003, *21*, 439 443.
- (24) Nguyen, T. P.; Shim, J. H.; Lee, J. Y. Density Functional Theory Studies of Hole Mobility in Picene and Pentacene Crystals. J. Phys. Chem. C 2015, 119, 11301–11310.
- (25) Mamada, M.; Yamashita, Y. Polycyclic Arenes and Heteroarenes; Wiley-VCH Verlag GmbH & Co. KGaA, 2015; pp 277–308.
- (26) Okamoto, H.; Kawasaki, N.; Kaji, Y.; Kubozono, Y.; Fujiwara, A.; Yamaji, M. Air-assisted High-performance Field-effect Transistor with Thin Films of Picene. J. Am. Chem. Soc. 2008, 130, 10470–10471.
- (27) Zhu, R.; Duan, Y.-A.; Geng, Y.; Wei, C.-Y.; Chen, X.-Y.; Liao, Y. Theoretical evaluation on the reorganization energy of five-ring-fused benzothiophene derivatives. *Comp. Theor. Chem.* 2016, 1078, 16–22.
- (28) Knipp, D.; Street, R. A.; Völkel, A.; Ho, J. Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport. J. Appl. Phys. 2003, 93, 347–355.

- (29) Lehnherr, D.; Waterloo, A. R.; Goetz, K. P.; Payne, M. M.; Hampel, F.; Anthony, J. E.; Jurchescu, O. D.; Tykwinski, R. R. Isomerically Pure syn-Anthradithiophenes: Synthesis, Properties, and FET Performance. Org. Lett. 2012, 14, 3660–3663.
- (30) Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J. Synthesis, Morphology, and Field-Effect Mobility of Anthradithiophenes. J. Am. Chem. Soc. 1998, 120, 664–672.
- (31) Mori, T.; Nishimura, T.; Yamamoto, T.; Doi, I.; Miyazaki, E.; Osaka, I.; Takimiya, K. Consecutive Thiophene-Annulation Approach to π-Extended Thienoacene-Based Organic Semiconductors with [1]Benzothieno[3,2-b][1]benzothiophene (BTBT) Substructure. J. Am. Chem. Soc. 2013, 135, 13900–13913.
- (32) Liu, W.-J.; Zhou, Y.; Ma, Y.; Cao, Y.; Wang, J.; Pei, J. Thin Film Organic Transistors from Air-Stable Heteroarenes: Anthra[1,2-b:4,3-b':5,6-b":8,7-b"']tetrathiophene Derivatives. Org. Lett. 2007, 9, 4187–4190.
- (33) Wex, B.; Kaafarani, B. R.; Schroeder, R.; Majewski, L. A.; Burckel, P.; Grell, M.; Neckers, D. C. New organic semiconductors and their device performance as a function of thiophene orientation. J. Mater. Chem. 2006, 16, 1121–1124.
- (34) Gundlach, D. J.; Lin, Y.-Y.; Jackson, T. N.; Schlom, D. G. Oligophenyl-based organic thin film transistors. Appl. Phys. Lett. 1997, 71, 3853–3855.
- (35) Katz, H. E.; Lovinger, A. J.; Hong, X. M.; Dodabalapur, A.; Johnson, J.; Wang, B.-C.; Raghavachari, K. Design of organic transistor semiconductors for logic elements, displays, and sensors. *Proc. SPIE* **2001**, 4466, 20–30.
- (36) Funahashi, M.; Kato, T. Design of liquid crystals: from a nematogen to thiophene-based π-conjugated mesogens. Liq. Cryst. 2015, 42, 909–917.
- (37) Ueda, Y.; Tsuji, H.; Tanaka, H.; Nakamura, E. Synthesis, Crystal Packing, and Ambipolar Carrier Transport Property of Twisted Dibenzo[g,p]chrysenes. Chem. - Asian J 2014, 9, 1623– 1628.

- (38) Watanabe, M.; Chang, Y. J.; Liu, S.-W.; Chao, T.-H.; Goto, K.; Minarul, I.; Yuan, C.-H.; Tao, Y.-T.; Shinmyozu, T.; Chow, T. J. The synthesis, crystal structure and charge-transport properties of hexacene. *Nat Chem* **2012**, *4*, 574–578.
- (39) Brusso, J. L.; Hirst, O. D.; Dadvand, A.; Ganesan, S.; Cicoira, F.; Robertson, C. M.; Oakley, R. T.; Rosei, F.; Perepichka, D. F. Two-Dimensional Structural Motif in Thienoacene Semiconductors: Synthesis, Structure, and Properties of Tetrathienoanthracene Isomers. *Chem. Mater.* 2008, 20, 2484–2494.
- (40) Tang, M. L.; Mannsfeld, S. C. B.; Sun, Y.-S.; Becerril, H. A.; Bao, Z. Pentaceno[2,3-b]thiophene, a Hexacene Analogue for Organic Thin Film Transistors. J. Am. Chem. Soc. 2009, 131, 882–883.
- (41) Yamamoto, T.; Shinamura, S.; Miyazaki, E.; Takimiya, K. Three Structural Isomers of Dinaphthothieno[3,2-b]thiophenes: Elucidation of Physicochemical Properties, Crystal Structures, and Field-Effect Transistor Characteristics. Bull. Chem. Soc. Jpn. 2010, 83, 120–130.
- (42) Yamamoto, T.; Takimiya, K. Facile Synthesis of Highly -Extended Heteroarenes, Dinaphtho[2,3-b:2',3'-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors. J. Am. Chem. Soc. 2007, 129, 2224.
- (43) Takimiya, K.; Kunugi, Y.; Konda, Y.; Niihara, N.; Otsubo, T. 2,6-Diphenylbenzo[1,2-b:4,5-b']dichalcogenophenes: A New Class of High-Performance Semiconductors for Organic Field-Effect Transistors. J. Am. Chem. Soc. 2004, 126, 5084–5085.
- (44) Shi, J.; Li, Y.; Jia, M.; Xu, L.; Wang, H. Organic semiconductors based on annelated [small beta]-oligothiophenes and its application for organic field-effect transistors. J. Mater. Chem. 2011, 21, 17612–17614.
- (45) Ito, K.; Suzuki, T.; Sakamoto, Y.; Kubota, D.; Inoue, Y.; Sato, F.; Tokito, S. Oligo(2,6-anthrylene)s: Acene-Oligomer Approach for Organic Field-Effect Transistors. Angew. Chem. Int. Ed. 2003, 42, 1159–1162.

- (46) Sun, Y.; Ma, Y.; Liu, Y.; Lin, Y.; Wang, Z.; Wang, Y.; Di, C.; Xiao, K.; Chen, X.; Qiu, W.; Zhang, B.; Yu, G.; Hu, W.; Zhu, D. High-Performance and Stable Organic Thin-Film Transistors Based on Fused Thiophenes. *Adv. Funct. Mater.* **2006**, *16*, 426–432.
- (47) Liu, Y.; Sun, X.; Di, C.-a.; Liu, Y.; Du, C.; Lu, K.; Ye, S.; Yu, G. Hexathienoacene: Synthesis, Characterization, and Thin-Film Transistors. *Chem. - Asian J.* **2010**, *5*, 1550–1554.
- (48) Dai, G.; Chang, J.; Shi, X.; Zhang, W.; Zheng, B.; Huang, K.-W.; Chi, C. Thienoacene-Fused Pentalenes: Syntheses, Structures, Physical Properties and Applications for Organic Field-Effect Transistors. *Chem. - Eur. J.* **2015**, *21*, 2019–2028.
- (49) Yoshihito, K.; Kazuo, T.; Kazuo, Y.; Yoshio, A.; Tetsuo, O. Organic Field-Effect Transistors
 Using Di(2-thienyl)naphthodithiophenes as Active Layers. *Chem. Lett.* 2002, *31*, 958–959.
- (50) Afonina, I.; Skabara, P. J.; Vilela, F.; Kanibolotsky, A. L.; Forgie, J. C.; Bansal, A. K.; Turnbull, G. A.; Samuel, I. D. W.; Labram, J. G.; Anthopoulos, T. D.; Coles, S. J.; Hursthouse, M. B. Synthesis and characterisation of new diindenodithienothiophene (DITT) based materials. J. Mater. Chem. 2010, 20, 1112–1116.
- (51) Huang, P.-Y.; Chen, L.-H.; Kim, C.; Chang, H.-C.; Liang, Y.-j.; Feng, C.-Y.; Yeh, C.-M.; Ho, J.-C.; Lee, C.-C.; Chen, M.-C. High-Performance Bottom-Contact Organic Thin-Film Transistors Based on Benzo[d,d']thieno[3,2-b;4,5-b']dithiophenes (BTDTs) Derivatives. ACS Appl. Mater. Interfaces 2012, 4, 6992–6998.
- (52) Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J.; Dodabalapur, A. Benzodithiophene Rings as Semiconductor Building Blocks. Adv. Mater. 1997, 9, 36–39.
- (53) Tan, L.; Zhang, L.; Jiang, X.; Yang, X.; Wang, L.; Wang, Z.; Li, L.; Hu, W.; Shuai, Z.; Li, L.; Zhu, D. A Densely and Uniformly Packed Organic Semiconductor Based on Annelated beta-Trithiophenes for High-Performance Thin Film Transistors. Adv. Funct. Mater. 2009, 19, 272–276.
- (54) Bao, Z.; A. Rogers, J.; E. Katz, H. Printable organic and polymeric semiconducting materials and devices. J. Mater. Chem. 1999, 9, 1895–1904.

- (55) Shinamura, S.; Osaka, I.; Miyazaki, E.; Nakao, A.; Yamagishi, M.; Takeya, J.; Takimiya, K. Linear- and Angular-Shaped Naphthodithiophenes: Selective Synthesis, Properties, and Application to Organic Field-Effect Transistors. J. Am. Chem. Soc. 2011, 133, 5024–5035.
- (56) Sirringhaus, H.; H. Friend, R.; Wang, C.; Leuninger, J.; Mullen, K. Dibenzothienobisbenzothiophene-a novel fused-ring oligomer with high field-effect mobility. J. Mater. Chem. 1999, 9, 2095–2101.
- (57) Seok, Y. Y.; Takuma, Y.; Chihaya, A. Organic Single-Crystal Transistors Based on *pi*-Extended Heteroheptacene Microribbons. *Bull. Chem. Soc. Jpn.* **2012**, *85*, 1186–1191.
- (58) Kim, H.-S.; Kim, Y.-H.; Kim, T.-H.; Noh, Y.-Y.; Pyo, S.; Yi, M. H.; Kim, D.-Y.; Kwon, S.-K. Synthesis and Studies on 2-Hexylthieno[3,2-b]thiophene End-Capped Oligomers for OTFTs. *Chem. Mater.* 2007, 19, 3561–3567.
- (59) Okamoto, T.; Kudoh, K.; Wakamiya, A.; Yamaguchi, S. General Synthesis of Thiophene and Selenophene-Based Heteroacenes. Org. Lett. 2005, 7, 5301–5304.
- (60) Tasaka, S.; Katz, H.; Hutton, R.; Orenstein, J.; Fredrickson, G.; Wang, T. Electrical conductivity of α-quinquethiophene/stearic acid Langmuir-Blodgett films doped with iodine. Synth. Met. 1986, 16, 17 – 30.
- (61) Sokolov, A. N.; Atahan-Evrenk, S.; Mondal, R.; Akkerman, H. B.; Sánchez-Carrera, R. S.; Granados-Focil, S.; Schrier, J.; Mannsfeld, S. C. B.; Zoombelt, A. P.; Bao, Z.; Aspuru-Guzik, A. From computational discovery to experimental characterization of a high hole mobility organic crystal. *Nat. Commun.* **2011**, *2*, 437–8.
- (62) Yanagi, H.; Araki, Y.; Ohara, T.; Hotta, S.; Ichikawa, M.; Taniguchi, Y. Comparative Carrier Transport Characteristics in Organic Field-Effect Transistors with Vapor-Deposited Thin Films and Epitaxially Grown Crystals of Biphenyl-Capped Thiophene Oligomers. Adv. Funct. Mater. 2003, 13, 767–773.
- (63) Facchetti, A.; Yoon, M.-H.; Katz, H. E.; Marks, T. J. Materials for n-type organic electronics: synthesis and properties of fluoroarene-thiophene semiconductors. 2003.

- (64) Yoon, M.-H.; Facchetti, A.; Stern, C. E.; Marks, T. J. Fluorocarbon-Modified Organic Semiconductors: Molecular Architecture, Electronic, and Crystal Structure Tuning of Arene- versus Fluoroarene-Thiophene Oligomer Thin-Film Properties. J. Am. Chem. Soc. 2006, 128, 5792– 5801.
- (65) Kang, M. J.; Miyazaki, E.; Osaka, I.; Takimiya, K.; Nakao, A. Diphenyl Derivatives of Dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene: Organic Semiconductors for Thermally Stable Thin-Film Transistors. ACS Appl. Mater. Interfaces 2013, 5, 2331–2336.
- (66) Peng, X.; Horowitz, G.; Fichou, D.; Garnier, F. All-organic thin-film transistors made of alphasexithienyl semiconducting and various polymeric insulating layers. *Appl. Phys. Lett.* 1990, 57, 2013.
- (67) Zhang, S.; Guo, Y.; Zhang, Y.; Liu, R.; Li, Q.; Zhan, X.; Liu, Y.; Hu, W. Synthesis, self-assembly, and solution-processed nanoribbon field-effect transistor of a fused-nine-ring thienoacene. *Chem. Commun.* **2010**, *46*, 2841–2843.
- (68) Podzorov, V.; Sysoev, S.; Loginova, E.; Pudalov, V.; Gershenson, M. Single-crystal organic field effect transistors with the hole mobility ≈ 8 cm²/Vs. Appl. Phys. Lett. 2003, 83, 3504.