Supporting Information

Large enhanced photocatalytic activity of $g-C_3N_4$ by fabrication of a nanocomposite with introducing upconversion nanocrystal and Ag nanoparticles

Feifei Zhao, Kyu Kyu Khaing, Dongguang Yin*, Bingji Liu, Tao Chen, Chenglong

Wu, Kexian Huang, LinLin Deng, Luqiu Li

School of Environmental and Chemical Engineering, Shanghai University, Shanghai,

200444, E-mail: <u>ydg@shu.edu.cn</u>

Fig. S1. TEM image of UCNPs@SiO₂/g-C₃N₄.

Fig. S2. TEM image of 3wt%Ag/g-C₃N₄.

Fig. S3. XRD patterns of the UCNPs@SiO₂@Xwt% Ag/g-C₃N₄ nanocomposites with different doping amounts of Ag (X=1, 3, 5, and 10). The corresponding standard data for the face-centered cubic phase of silver (JCDS 04-0783) is also given at the bottom.

Fig. S4. Absorption spectra of UCNPs@SiO₂/g-C₃N₄ and UCNPs@SiO₂@Ag/g-C₃N₄ nanocomposites in ethanol.

Fig. S5. (a) UV-Vis-NIR diffuse reflectance spectra of UCNPs@SiO₂@Xwt% Ag/g-C3N4 nanocomposites with different doping amounts of Ag (X =1, 3, 5, and 10). (b) Plots of $(\alpha h\nu)^{1/2}$ vs. photon energy (hv).

Fig. S6. (a) Photocatalytic degradation of RhB and (b) the kinetics study over different simulated light photocatalysts under solar irradiation: (A) UCNPs@SiO₂/g-C₃N₄; UCNPs@SiO₂@10wt%Ag/g-C₃N₄; **(B)** (C) UCNPs@SiO₂@1wt%Ag/g-C₃N₄; (D) UCNPs@SiO₂@5wt%Ag/g-C₃N₄; (E) UCNPs@SiO₂@3wt%Ag/g-C₃N₄. The inset in (b) shows the rate constants vs Ag loading.

The possible mechanism of photocatalytic degradation of RhB in the present of UCNPs@SiO₂@Ag/g-C₃N₄ photocatalyst under simulated solar light irradiation is depicted in Fig. S7. After absorbing the solar and upconverted light, the excited g- C_3N_4 generates electron-hole pairs. The electrons transfer from the VB of g- C_3N_4 to the surface of Ag NPs. These electrons accumulated on the surface of Ag NPs react with O₂ to produce \cdotO_2^- radicals, while the holes in the VB of g- C_3N_4 can react with OH⁻/H₂O to generate \cdot OH radicals. These reactive radicals and holes can directly take part in the photocatalytic degradation reaction to degrade RhB.

Fig. S7. Schematic illustration of photocatalytic mechanism of degradation of RhB over UCNPs@SiO₂@Ag/g-C₃N₄ photocatalysts under simulated solar light irradiation.

Fig. S8. (a) Photocatalytic degradation of RhB and (b) the kinetics study over different photocatalysts under NIR light irradiation: (A) UCNPs@SiO₂@Ag; (B) bulk g-C₃N₄; (C) UCNPs@SiO₂/g-C₃N₄; (D) Ag/g-C₃N₄; (E) UCNPs@SiO₂@3wt%Ag/g-C₃N₄.

The XPS spectra of the as-synthesized UCNPs@SiO₂@3wt%Ag/g-C₃N₄ nanocomposite were analyzed to further confirm the chemical composition and the

status of the elements. The XPS spectra of UCNPs@SiO₂@3wt%Ag/g-C₃N₄ are shown in Fig. S9. The C 1s spectrum has four distinct peaks centered at 284.12, 285.30, 287.51 and 292.22 eV, which are assigned to the adventitious carbon (C–C), the sp³-hybridized carbon (C–(N)₃), the sp²-hybridized carbon (N–C=N) and π – π *. The N 1s spectrum is separated into four peaks centered at 398.12, 398.96, 400.66 and 404.00 eV, which are assigned to the sp²-hybridized nitrogen in aromatic triazine rings (C–C=N), the tertiary nitrogen (N-(C)₃), the free amino groups (C–N–H), and the charging effects or positive charge localization in the heterocycles, respectively. The Ag 3d spectrum presents two individual peaks at about 367.60 and 373.60 eV with 6.0 eV splitting between the two peaks, which corresponds to the metallic Ag⁰ species. The binding energies at 102.50 eV and 531.97 eV are attributed to the Si⁴⁺ and O^{2 -}, respectively, suggesting the existence of SiO₂. XPS peaks of Na (1s, 1072.47 eV), Gd (4d, 140.46 eV), F (1s, 685.85 eV), Lu (4d_{5/2}, 197.11 eV), Lu (4d_{3/2}, 206.53 eV), Yb (4d, 182.37 eV), and Tm (4d, 175.39 eV) are also found in Fig. S9 f-k.

Fig. S9. XPS spectra of UCNPs@SiO₂@3wt%Ag/g-C₃N₄ nanocomposite: (a) C 1s, (b) N 1s, (c) Ag 3d, (d) Si 2p, (e) O 1s, (f) Na 1s, (g) Gd 4d, (h) F 1s, (i) Lu 4d, (j) Yb 4d, (k) Tm 4d.

photocatalyst	organic	time	officionay	reference
	pollutant	(min)	efficiency	
g-C ₃ N ₄	RhB	150	62%	this work
UCNPs@SiO ₂ /g-C ₃ N ₄	RhB	150	100%	this work
Ag/g-C ₃ N ₄	RhB	120	100%	this work
UCNPs@SiO ₂ @1wt%Ag/g-C ₃ N ₄	RhB	90	98%	this work
UCNPs@SiO ₂ @3wt%Ag/g-C ₃ N ₄	RhB	90	100%	this work
UCNPs@SiO ₂ @5wt%Ag/g-C ₃ N ₄	RhB	90	99%	this work

Table. S1. Comparison with different photocatalysts for photocatalytic degradation of organic pollutant under simulated solar light irradiation.

UCNPs@SiO ₂ @10wt%Ag/g-C ₃ N ₄	RhB	90	75	this work
NaYF ₄ :Yb ³⁺ ,Er ³⁺ ,Tm ³⁺ /g-C ₃ N ₄	methyl orange	420	47%	23
Au-NaYF4:Yb ³⁺ ,Er ³⁺ ,Tm ³⁺ /g-C ₃ N ₄	methyl orange	420	83%	23
UCNPs@SiO ₂ /TiO ₂	RhB	210 83.98		25
UCNPs@SiO ₂ @Ag/TiO ₂	RhB	210	99.46%	25
UCNPs@SiO ₂ @CeO ₂	RhB	210	63%	26
UCNPs@SiO ₂ @CeO ₂ :Tm	RhB	210	82%	26
UCNPs@SiO ₂ @CeO ₂ :Tm/GN	RhB	210	95%	26

 Table. S2. Comparison with different photocatalysts for photocatalytic hydrogen

 evolution.

nhotoontolyst	soorificial agont	H ₂ generation rate	light	reference
photocataryst	Sacrificial agent	$(\mu mol \cdot h^{-1} \cdot g^{-1})$	(nm)	
a C N	triathanalamina	70	190-	this work
g-C ₃ N ₄	ulemanolamine	12	1100	
UCNPs@SiO ₂ /g-C ₃ N ₄	tri othor olomino	210	190-	this work
	trietnanolamine	319	1100	
Ag/g-C ₃ N ₄		507	190-	this work
	trietnanolamine	507	1100	
UCNPs@SiO ₂ @Ag/g-C ₃ N ₄		072	190-	this work
	trietnanolamine	8/3	1100	
Pr ³⁺ -Y ₂ SiO ₅ /CaTiO ₃	g 1 1:	1.05	420-	67
	perfluorodecalin	1.05	1100	57
SrTiO ₃ -Er ³⁺		4(22	420-	50
	$1Na_2SO_3/1Na_2S$	40.23	1100	38